
z/OS

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

SA22-7875-01

���

z/OS

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

SA22-7875-01

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

289.

Second

Edition,

March

2004

This

edition

applies

to

Version

1

Release

5

of

z/OS

(5694-A01),

Version

1

Release

5

of

z/OS.e

(5655-G52),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

A

form

for

readers’

comments

may

be

provided

at

the

back

of

this

document,

or

you

may

address

your

comments

to

the

following

address:

International

Business

Machines

Corporation

Department

55JA,

Mail

Station

P384

2455

South

Road

Poughkeepsie,

NY

12601-5400

United

States

of

America

FAX

(United

States

&

Canada):

1+845+432-9405

FAX

(Other

Countries):

Your

International

Access

Code

+1+845+432-9405

IBMLink™

(United

States

customers

only):

IBMUSM10(MHVRCFS)

Internet

e-mail:

mhvrcfs@us.ibm.com

World

Wide

Web:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If

you

would

like

a

reply,

be

sure

to

include

your

name,

address,

telephone

number,

or

FAX

number.

Make

sure

to

include

the

following

in

your

comment

or

note:

v

Title

and

order

number

of

this

document

v

Page

number

or

topic

related

to

your

comment

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Who

should

use

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

use

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Where

to

find

more

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Softcopy

publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Using

LookAt

to

look

up

message

explanations

.

.

.

.

.

.

.

.

.

.

.

. xii

Accessing

z/OS

licensed

documents

on

the

Internet

.

.

.

.

.

.

.

.

.

. xii

Other

sources

of

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Internet

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

To

request

copies

of

IBM

publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Summary

of

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Chapter

1.

Enterprise

Identity

Mapping

(EIM)

.

.

.

.

.

.

.

.

.

.

.

.

. 1

The

problem:

Managing

multiple

user

registries

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Current

approaches

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

The

EIM

approach

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Chapter

2.

EIM

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

EIM

domain

controller

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

EIM

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

EIM

identifier

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

EIM

identifier

representing

a

person

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

EIM

identifier

representing

an

entity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

EIM

identifiers

and

aliasing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

EIM

registry

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

EIM

registry

definitions

and

aliasing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

System

and

application

registry

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

EIM

associations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

EIM

lookup

operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Authorities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Chapter

3.

Planning

for

EIM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Identifying

skill

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Team

members

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Planning

for

EIM

client

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Planning

for

an

EIM

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Planning

for

EIM

registries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Planning

considerations

for

identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Planning

considerations

for

associations

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Accessing

the

EIM

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Planning

considerations

for

an

EIM

domain

controller

.

.

.

.

.

.

.

.

.

.

. 27

Planning

EIM

administration

tools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Customizing

EIM

on

your

operating

system

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Task

roadmap

for

implementing

EIM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Chapter

4.

Setting

up

EIM

on

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Steps

for

installing

and

configuring

the

EIM

domain

controller

on

z/OS

.

.

.

. 31

Installing

and

configuring

EIM

on

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

©

Copyright

IBM

Corp.

2004

iii

||

||

Steps

for

using

the

eimadmin

utility

to

manage

an

EIM

domain

.

.

.

.

.

.

. 34

Domain

authentication

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Using

simple

binds

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Using

CRAM-MD5

password

protection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Using

digital

certificates

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Using

Kerberos

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Using

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Installation

considerations

for

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Ongoing

administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Managing

registries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Working

with

registry

aliases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Adding

a

new

user

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Removing

a

user

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Changing

access

authority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Chapter

5.

Using

RACF

commands

to

set

up

and

tailor

EIM

.

.

.

.

.

.

. 47

Using

RACF

for

EIM

domain

access

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Setting

up

default

domain

LDAP

URL

and

binding

information

.

.

.

.

.

.

. 48

Storing

LDAP

binding

information

in

a

profile

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Optionally

setting

up

a

registry

name

for

your

local

RACF

registry

.

.

.

.

.

. 50

Steps

for

setting

up

lookups

that

do

not

need

a

registry

name

.

.

.

.

.

. 50

Ongoing

RACF

administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Disabling

use

of

an

EIM

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Using

output

from

the

RACF

database

unload

utility

and

eimadmin

to

prime

your

EIM

domain

with

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Chapter

6.

Developing

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Writing

EIM

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Default

registry

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Defining

private

user

registry

types

in

EIM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Building

an

EIM

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Compile

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Link-edit

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Preparing

to

run

an

EIM

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

APIs

for

retrieving

the

LDAP

URL

and

binding

information

.

.

.

.

.

.

.

.

. 60

Determining

why

a

mapping

is

not

returned

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Chapter

7.

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Chapter

8.

The

eimadmin

utility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

eimadmin

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Examples

for

listing

various

objects

without

an

input

file

.

.

.

.

.

.

.

.

.

. 88

Using

an

input

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Input

file

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Input

file

contents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

The

output

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

The

error

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Example

for

adding

a

list

of

identifiers

to

an

EIM

domain

.

.

.

.

.

.

.

. 92

Chapter

9.

EIM

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Authority

to

use

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

EimRC

--

EIM

return

code

parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Field

descriptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

eimAddAccess

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

eimAddApplicationRegistry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

eimAddAssociation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

iv

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
||
||
||
||
||

||

||

||

eimAddIdentifier

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

eimAddSystemRegistry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

eimChangeDomain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

eimChangeIdentifier

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

eimChangeRegistry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

eimChangeRegistryAlias

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

eimChangeRegistryUser

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

eimConnect

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

eimConnectToMaster

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

eimCreateDomain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

eimCreateHandle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

eimDeleteDomain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

eimDestroyHandle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

eimErr2String

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

eimGetAssociatedIdentifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

eimGetAttribute

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

eimGetRegistryNameFromAlias

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

eimGetTargetFromIdentifier

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

eimGetTargetFromSource

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

eimListAccess

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

eimListAssociations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

eimListDomains

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

eimListIdentifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

eimListRegistries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

eimListRegistryAliases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

eimListRegistryUsers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

eimListUserAccess

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

eimQueryAccess

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

eimRemoveAccess

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

eimRemoveAssociation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

eimRemoveIdentifier

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

eimRemoveRegistry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

eimRetrieveConfiguration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

eimSetAttribute

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

eimSetConfiguration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Chapter

10.

EIM

header

file

and

example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

eim.h

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Example

for

creating

LDAP

suffix

and

user

objects

.

.

.

.

.

.

.

.

.

.

. 288

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Contents

v

||

vi

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Tables

1.

Working

with

domains

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

2.

Working

with

identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

3.

Working

with

registries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

4.

Working

with

associations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

5.

Working

with

mappings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

6.

Working

with

access

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

7.

Roles,

tasks,

and

skills

for

setting

up

EIM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

8.

EIM

APIs

software

and

hardware

prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

9.

Domain

worksheet

for

creating

an

EIM

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

10.

Registry

worksheet

to

help

with

planning

considerations

for

EIM

registries

and

associations

25

11.

Identifier

worksheet

to

help

with

planning

considerations

for

identifiers

.

.

.

.

.

.

.

.

.

.

. 25

12.

Registry

user

worksheet

to

help

with

planning

considerations

for

EIM

associations

.

.

.

.

.

. 26

13.

Bind

worksheet

to

help

in

planning

for

accessing

the

EIM

domain

.

.

.

.

.

.

.

.

.

.

.

.

. 27

14.

Software

and

hardware

worksheet

to

help

in

planning

for

your

EIM

domain

controller

.

.

.

.

. 28

15.

Information

needed

for

LDAP

administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

16.

Tasks

for

implementing

EIM

on

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

17.

HFS

install

directories

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

18.

Decision

table

for

RACF

profiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

19.

LDAP

information

needed

for

creating

RACF

profiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

20.

Local

registry

name

needed

for

creating

RACF

profiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

21.

Required

and

optional

flags

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

22.

Required

connection

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

23.

Eimadmin

utility

exit

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

24.

Hexadecimal

character

values

for

invisible

control

characters

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

25.

Summary

of

associated

labels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

©

Copyright

IBM

Corp.

2004

vii

||

||
||
||

||
||

viii

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Figures

1.

Overview

of

an

EIM

implementation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

2.

EIM

domain

and

the

data

that

is

stored

within

the

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

3.

The

relationship

between

the

EIM

identifier

for

a

real

person,

John

Day,

and

his

various

user

identities.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

4.

The

relationship

between

the

EIM

identifier

that

represents

the

printer

server

function,

and

the

various

identities

for

that

function.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

5.

Aliases

for

the

two

EIM

identifiers

based

on

the

shared

proper

name,

John

S.

Day.

.

.

.

.

.

. 10

6.

EIM

registry

definitions

for

three

real-world

user

registries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

7.

EIM

registry

definitions

for

both

the

RACF

user

registry

and

for

a

subset

of

the

RACF

registry

13

8.

EIM

target

and

source

associations

for

the

EIM

identifier

John

Day

.

.

.

.

.

.

.

.

.

.

.

. 15

9.

EIM

administrative

associations

for

the

EIM

identifier,

John

Day

.

.

.

.

.

.

.

.

.

.

.

.

. 16

10.

EIM

lookup

operation

based

on

the

known

user

identity

johnday

.

.

.

.

.

.

.

.

.

.

.

.

. 17

11.

EIM

configurations

involving

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

©

Copyright

IBM

Corp.

2004

ix

||

x

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

About

this

document

This

document

supports

z/OS

(5694-A01)

and

z/OS.e

(5655-G52).

This

document

contains

information

about

using

Enterprise

Identity

Mapping

(EIM).

EIM

is

an

architecture

that

serves

as

a

security

technology

to

make

it

easier

to

manage

users

in

a

cross-platform

environment.

For

a

detailed

introduction

of

EIM,

see

Chapter

1,

“Enterprise

Identity

Mapping

(EIM),”

on

page

1.

Who

should

use

this

document

EIM

requires

a

Lightweight

Directory

Access

Protocol

(LDAP)

server

because

EIM

data

is

stored

in

LDAP.

(For

information

about

LDAP

requirements,

see

“Planning

considerations

for

an

EIM

domain

controller”

on

page

27.)

EIM

optionally

requires

RACF

or

an

equivalent

external

security

manager.

Those

who

might

find

this

document

helpful

include

the

following:

v

EIM

administrators

who

plan,

install,

configure,

customize,

administer,

or

use

EIM

v

RACF

administrators

who

issue

commands

in

support

of

EIM

v

Application

programmers

v

LDAP

administrators

who

install,

configure,

or

administer

LDAP

in

support

of

EIM

(See

“Team

members”

on

page

21

for

a

complete

list

of

team

members.)

This

document

assumes

that

you

are

familiar

with

the

following

concepts

and

protocols:

v

LDAP

v

z/OS

UNIX

System

Services

shell

v

C/C++

programming

languages

How

to

use

this

document

For

a

detailed

introduction

of

EIM,

see

Chapter

1,

“Enterprise

Identity

Mapping

(EIM),”

on

page

1.

Where

to

find

more

information

Where

necessary,

this

book

refers

to

information

in

other

books.

For

complete

titles

and

order

numbers

for

all

elements

of

z/OS,

see

z/OS

Information

Roadmap.

Softcopy

publications

The

Security

Server

library

is

available

on

the

following

CD-ROM

and

DVD

collections.

The

CD-ROM

online

library

collections

include

the

IBM

Softcopy

Reader,

which

is

a

program

that

enables

you

to

view

the

softcopy

books.

SK3T-4269

z/OS

Version

1

Release

4

Collection

This

CD-ROM

collection

contains

the

set

of

unlicensed

books

for

the

current

release

of

z/OS

in

both

BookManager

and

Portable

Document

Format

(PDF)

files.

You

can

view

or

print

the

PDF

files

with

the

Adobe

Acrobat

reader.

SK3T-4272

z/OS

Security

Server

RACF

Collection

©

Copyright

IBM

Corp.

2004

xi

This

CD-ROM

softcopy

collection

contains

the

z/OS

Security

Server

library

in

both

BookManager

and

Portable

Document

Format

(PDF)

files.

You

can

view

or

print

the

PDF

files

with

the

Adobe

Acrobat

reader.

SK3T-4271

z/OS

Version

1

Release

4

and

Software

Products

DVD

Collection

This

DVD

collection

contains

libraries

for

a

single

release

of

z/OS,

plus

libraries

for

multiple

releases

of

related

software

products

that

run

on

z/OS.

It

also

includes

selected

IBM

eserver

zSeries

Redbooks.

The

documents

are

provided

in

both

BookManager

and

PDF

formats

when

available.

Using

LookAt

to

look

up

message

explanations

LookAt

is

an

online

facility

that

lets

you

look

up

explanations

for

most

of

the

IBM®

messages

you

encounter,

as

well

as

for

some

system

abends

and

codes.

Using

LookAt

to

find

information

is

faster

than

a

conventional

search

because

in

most

cases

LookAt

goes

directly

to

the

message

explanation.

You

can

use

LookAt

from

the

following

locations

to

find

IBM

message

explanations

for

z/OS®

elements

and

features,

z/VM®,

and

VSE:

v

The

Internet.

You

can

access

IBM

message

explanations

directly

from

the

LookAt

Web

site

at

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v

Your

z/OS

TSO/E

host

system.

You

can

install

code

on

your

z/OS

or

z/OS.e®

systems

to

access

IBM

message

explanations,

using

LookAt

from

a

TSO/E

command

line

(for

example,

TSO/E

prompt,

ISPF,

or

z/OS

UNIX®

System

Services

running

OMVS).

v

Your

Windows®

workstation.

You

can

install

code

to

access

IBM

message

explanations

on

the

z/OS

Collection

(SK3T-4269),

using

LookAt

from

a

Windows

DOS

command

line.

v

Your

wireless

handheld

device.

You

can

use

the

LookAt

Mobile

Edition

with

a

handheld

device

that

has

wireless

access

and

an

Internet

browser

(for

example,

Internet

Explorer

for

Pocket

PCs,

Blazer,

or

Eudora

for

Palm

OS,

or

Opera

for

Linux

handheld

devices).

Link

to

the

LookAt

Mobile

Edition

from

the

LookAt

Web

site.

You

can

obtain

code

to

install

LookAt

on

your

host

system

or

Windows

workstation

from

a

disk

on

your

z/OS

Collection

(SK3T-4269),

or

from

the

LookAt

Web

site

(click

Download,

and

select

the

platform,

release,

collection,

and

location

that

suit

your

needs).

More

information

is

available

in

the

LOOKAT.ME

files

available

during

the

download

process.

Accessing

z/OS

licensed

documents

on

the

Internet

z/OS

licensed

documentation

is

available

on

the

Internet

in

PDF

format

at

the

IBM

Resource

Link™

Web

site

at:

http://www.ibm.com/servers/resourcelink

Licensed

documents

are

available

only

to

customers

with

a

z/OS

license.

Access

to

these

documents

requires

an

IBM

Resource

Link

user

ID

and

password,

and

a

key

code.

With

your

z/OS

order

you

received

a

Memo

to

Licensees,

(GI10-0671),

that

includes

this

key

code.

1

1.

z/OS.e

customers

received

a

Memo

to

Licensees,

(GI10-0684)

that

includes

this

key

code.

Preface

xii

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink

To

obtain

your

IBM

Resource

Link

user

ID

and

password,

log

on

to:

http://www.ibm.com/servers/resourcelink

To

register

for

access

to

the

z/OS

licensed

documents:

1.

Sign

in

to

Resource

Link

using

your

Resource

Link

user

ID

and

password.

2.

Select

User

Profiles

located

on

the

left-hand

navigation

bar.

Note:

You

cannot

access

the

z/OS

licensed

documents

unless

you

have

registered

for

access

to

them

and

received

an

e-mail

confirmation

informing

you

that

your

request

has

been

processed.

Printed

licensed

documents

are

not

available

from

IBM.

You

can

use

the

PDF

format

on

either

z/OS

Licensed

Product

Library

CD-ROM

or

IBM

Resource

Link

to

print

licensed

documents.

Other

sources

of

information

IBM

provides

customer-accessible

discussion

areas

where

EIM

and

RACF

may

be

discussed

by

customer

and

IBM

participants.

Other

information

is

also

available

through

the

Internet.

Internet

sources

EIM

is

a

cross-platform

infrastructure

that

is

available

on

the

following

platforms:

v

iSeries

For

more

iSeries

information

on

Enterprise

Identity

Mapping,

see

the

iSeries

Information

Center

at

the

following

URL:

http://www.ibm.com/eserver/iseries/infocenter

iSeries-specific

EIM

information

can

be

located

by

selecting

″Security″,

and

then

″Enterprise

Identity

Mapping″.

v

pSeries

v

xSeries

v

zSeries

For

more

information,

refer

to

the

eServer

Information

Center:

http://submit.boulder.ibm.com/eserver/

Specific

EIM

information

can

be

located

by

selecting

″Security″,

and

then

″Enterprise

Identity

Mapping″.

The

following

additional

resources

are

available

through

the

Internet

to

provide

additional

information

about

EIM

and

other

security-related

topics:

v

EIM

home

page

Visit

the

EIM

Web

page:

www.ibm.com/servers/eserver/security/EIM

v

Online

library

To

view

and

print

online

versions

of

the

z/OS

publications,

use

this

address:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

v

Redbooks

The

Redbooks

that

are

produced

by

the

International

Technical

Support

Organization

(ITSO)

are

available

at

the

following

address:

Preface

About

this

document

xiii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

http://www.ibm.com/redbooks/

v

Enterprise

systems

security

For

more

information

about

security

on

the

S/390

platform,

OS/390,

and

z/OS,

including

the

elements

that

comprise

the

Security

Server,

use

this

address:

http://www.ibm.com/servers/eserver/zseries/zos/security/

v

RACF

home

page

You

can

visit

the

RACF

home

page

on

the

World

Wide

Web

using

this

address:

http://www.ibm.com/servers/eserver/zseries/zos/racf/

v

RACF-L

discussion

list

Customers

and

IBM

participants

can

also

discuss

RACF

on

the

RACF-L

discussion

list.

RACF-L

is

not

operated

or

sponsored

by

IBM.

It

is

run

by

the

University

of

Georgia.

To

subscribe

to

the

RACF-L

discussion

and

receive

postings,

send

a

note

to:

listserv@listserv.uga.edu

Include

the

following

line

in

the

body

of

the

note,

substituting

your

first

name

and

last

name

as

indicated:

subscribe

racf-l

first_name

last_name

To

post

a

question

or

response

to

RACF-L,

send

a

note,

including

an

appropriate

Subject:

line,

to:

racf-l@listserv.uga.edu

v

Sample

code

You

can

get

sample

code,

internally-developed

tools,

and

exits

to

help

you

use

RACF.

This

code

works

in

IBM’s

test

environment,

at

the

time

we

make

it

available,

but

is

not

officially

supported.

Each

tool

or

sample

has

a

README

file

that

describes

the

tool

or

sample

and

any

restrictions

on

its

use.

To

access

this

code

from

a

Web

browser,

go

to

the

RACF

home

page

and

select

the

“Downloads”

topic

from

the

navigation

bar,

or

go

to

ftp://ftp.software.ibm.com/eserver/zseries/zos/racf/.

The

code

is

also

available

from

ftp.software.ibm.com

through

anonymous

FTP.

To

get

access:

1.

Log

in

as

user

anonymous.

2.

Change

the

directory,

as

follows,

to

find

the

subdirectories

that

contain

the

sample

code

or

tool

you

want

to

download:

cd

eserver/zseries/zos/racf/

An

announcement

is

posted

on

RACF-L,

MVSRACF,

and

SECURITY

CFORUM

whenever

function

is

added.

Note:

Some

Web

browsers

and

some

FTP

clients

(especially

those

using

a

graphical

interface)

might

have

problems

using

ftp.software.ibm.com

because

of

inconsistencies

in

the

way

they

implement

the

FTP

protocols.

If

you

have

problems,

you

can

try

the

following:

–

Try

to

get

access

by

using

a

Web

browser

and

the

links

from

the

RACF

home

page.

–

Use

a

different

FTP

client.

If

necessary,

use

a

client

that

is

based

on

command

line

interfaces

instead

of

graphical

interfaces.

–

If

your

FTP

client

has

configuration

parameters

for

the

type

of

remote

system,

configure

it

as

UNIX

instead

of

MVS.

Preface

xiv

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

http://www.ibm.com/redbooks/
http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/racf/
http://www.ibm.com/servers/eserver/zseries/zos/racf/
ftp://ftp.software.ibm.com/eserver/zseries/zos/racf/
http://www.ibm.com/servers/eserver/zseries/zos/racf/

Restrictions

Because

the

sample

code

and

tools

are

not

officially

supported,

–

There

are

no

guaranteed

enhancements.

–

No

APARs

can

be

accepted.

To

request

copies

of

IBM

publications

Direct

your

request

for

copies

of

any

IBM

publication

to

your

IBM

representative

or

to

the

IBM

branch

office

serving

your

locality.

There

is

also

a

toll-free

customer

support

number

(1-800-879-2755)

available

Monday

through

Friday

from

8:30

a.m.

through

5:00

p.m.

Eastern

Time.

You

can

use

this

number

to:

v

Order

or

inquire

about

IBM

publications

v

Resolve

any

software

manufacturing

or

delivery

concerns

v

Activate

the

program

reorder

form

to

provide

faster

and

more

convenient

ordering

of

software

updates

Preface

About

this

document

xv

Preface

xvi

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Summary

of

changes

Summary

of

changes

for

SA22-7875-01

z/OS

Version

1

Release

5

This

document

contains

information

previously

presented

in

z/OS

Security

Server

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference,

SA22-7875-00,

which

supports

z/OS

Version

1

Release

4.The

following

summarizes

the

changes

to

that

information.

New

information

v

Additional

bind

mechanism

support

was

added

to

allow

applications

and

administrators

to

bind

to

LDAP

with

a

kerberos

credential

or

digital

certificate.

In

addition,

CRAM-MD5

password

protection

is

now

supported

for

simple

bind

credentials.

This

document

contains

terminology,

maintenance,

and

editorial

changes.

Technical

changes

or

additions

to

the

text

and

illustrations

are

indicated

by

a

vertical

line

to

the

left

of

the

change.

This

document

contains

terminology,

maintenance,

and

editorial

changes,

including

changes

to

improve

consistency

and

retrievability.

©

Copyright

IBM

Corp.

2004

xvii

xviii

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

1.

Enterprise

Identity

Mapping

(EIM)

Today’s

network

environments

are

made

up

of

a

complex

group

of

systems

and

applications,

resulting

in

the

need

to

manage

multiple

user

registries.

Dealing

with

multiple

user

registries

quickly

grows

into

a

large

administrative

problem

that

affects

users,

administrators,

and

application

developers.

Consequently,

many

companies

are

struggling

to

securely

manage

authentication

and

authorization

for

systems

and

applications.

Enterprise

Identity

Mapping

(EIM)

is

an

IBM

eserver

infrastructure

technology

that

allows

administrators

and

application

developers

to

address

this

problem

more

easily

and

inexpensively

than

previously

possible.

The

following

information

describes

the

problems,

outlines

current

industry

approaches,

and

explains

why

the

EIM

approach

is

better.

The

problem:

Managing

multiple

user

registries

Many

administrators

manage

networks

that

include

different

systems

and

servers,

each

with

a

unique

way

of

managing

users

through

various

user

registries.

In

these

complex

networks,

administrators

are

responsible

for

managing

each

user’s

identities

and

passwords

across

multiple

systems.

Additionally,

administrators

often

must

synchronize

these

identities

and

passwords

and

users

are

burdened

with

remembering

multiple

identities

and

passwords

and

with

keeping

them

in

sync.

The

user

and

administrator

overhead

in

this

environment

is

excessive.

Consequently,

administrators

often

spend

valuable

time

troubleshooting

failed

logon

attempts

and

resetting

forgotten

passwords

instead

of

managing

the

enterprise.

The

problem

of

managing

multiple

user

registries

also

affects

application

developers

who

want

to

provide

multiple-tier

or

heterogeneous

applications.

These

developers

understand

that

customers

have

important

business

data

spread

across

many

different

types

of

systems,

with

each

system

possessing

its

own

user

registries.

Consequently,

developers

must

create

proprietary

user

registries

and

associated

security

semantics

for

their

applications.

Although

this

solves

the

problem

for

the

application

developer,

it

increases

the

overhead

for

users

and

administrators.

Current

approaches

Several

current

industry

approaches

for

solving

the

problem

of

managing

multiple

user

registries

are

available,

but

they

all

provide

incomplete

solutions.

For

example,

Lightweight

Directory

Access

Protocol

(LDAP)

provides

a

distributed

user

registry

solution.

However,

using

LDAP

(or

other

popular

solutions

such

as

Microsoft

Passport)

means

that

administrators

must

manage

yet

another

user

registry

and

security

semantics

or

must

replace

existing

applications

that

are

built

to

use

those

registries.

Using

this

type

of

solution,

administrators

must

manage

multiple

security

mechanisms

for

individual

resources,

thereby

increasing

administrative

overhead

and

potentially

increasing

the

likelihood

of

security

exposures.

When

multiple

mechanisms

support

a

single

resource,

the

chance

of

changing

the

authority

through

one

mechanism

and

forgetting

to

change

the

authority

for

one

or

more

of

the

other

mechanisms

is

much

higher.

For

example,

a

security

exposure

can

result

when

a

user

is

appropriately

denied

access

through

one

interface,

but

allowed

access

through

one

or

more

other

interfaces.

After

completing

this

work,

administrators

find

that

they

have

not

completely

solved

the

problem.

Generally,

enterprises

have

invested

too

much

money

in

current

user

©

Copyright

IBM

Corp.

2004

1

registries

and

in

their

associated

security

semantics

to

make

using

this

type

of

solution

practical.

Creating

another

user

registry

and

associated

security

semantics

solves

the

problem

for

the

application

provider,

but

not

the

problems

for

users

or

administrators.

One

other

possible

solution

is

to

use

a

single

sign-on

approach.

Several

products

are

available

that

allow

administrators

to

manage

files

that

contain

all

of

a

user’s

identities

and

passwords.

However,

this

approach

has

several

weaknesses:

v

It

addresses

only

one

of

the

problems

that

users

face.

Although

it

allows

users

to

sign

on

to

multiple

systems

by

supplying

one

identity

and

password,

it

does

not

eliminate

the

need

for

the

user

to

have

passwords

on

other

systems,

or

the

need

to

manage

these

passwords.

v

It

introduces

a

new

problem

by

creating

a

security

exposure

because

clear-text

or

decryptable

passwords

are

stored

in

these

files.

Passwords

should

never

be

stored

in

in

clear-text

files

or

be

easily

accessible

by

anyone,

including

administrators.

v

It

does

not

solve

the

problems

of

third-party

application

developers

who

provide

heterogeneous,

multiple-tier

applications.

They

must

still

provide

proprietary

user

registries

for

their

applications.

Despite

these

weaknesses,

some

enterprises

have

chosen

to

adopt

these

approaches

because

they

provide

some

relief

for

the

multiple

user

registry

problems.

The

EIM

approach

EIM

offers

a

new

approach

to

enable

inexpensive

solutions

to

easily

manage

multiple

user

registries

and

user

identities

in

an

enterprise.

EIM

is

an

architecture

for

describing

the

relationships

between

individuals

or

entities

(like

file

servers

and

print

servers)

in

the

enterprise

and

the

many

identities

that

represent

them

within

an

enterprise.

In

addition,

EIM

provides

a

set

of

APIs

that

allow

applications

to

ask

questions

about

these

relationships.

For

example,

given

a

person’s

user

identity

in

one

user

registry,

you

can

determine

which

user

identity

in

another

user

registry

represents

that

same

person.

If

the

user

has

authenticated

with

one

user

identity

and

you

can

map

that

user

identity

to

the

appropriate

identity

in

another

user

registry,

the

user

does

not

need

to

provide

credentials

for

authentication

again.

You

know

who

the

user

is

and

only

need

to

know

which

user

identity

represents

that

user

in

another

user

registry.

Therefore,

EIM

provides

a

generalized

identity

mapping

function

for

the

enterprise.

The

ability

to

map

between

a

user’s

identities

in

different

user

registries

provides

many

benefits.

Primarily,

it

means

that

applications

may

have

the

flexibility

of

using

one

user

registry

for

authentication

while

using

an

entirely

different

user

registry

for

authorization.

For

example,

an

administrator

could

map

an

SAP

identity

(or

better

yet,

SAP

could

do

the

mapping

itself)

to

access

SAP

resources.

The

use

of

identity

mapping

requires

that

administrators

do

the

following:

1.

Create

EIM

identifiers

that

represent

people

or

entities

in

their

enterprise

2.

Create

EIM

registry

definitions

that

describe

the

existing

user

registries

in

their

enterprise

3.

Define

the

relationship

between

the

user

identities

in

those

registries

to

the

EIM

identifiers

that

they

created

Introducing

EIM

2

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

No

code

changes

are

required

to

existing

user

registries.

The

administrator

does

not

need

to

have

mappings

for

all

identities

in

a

user

registry.

EIM

allows

one-to-many

mappings

(in

other

words,

a

single

user

with

more

than

one

user

identity

in

a

single

user

registry).

EIM

also

allows

many-to-one

mappings

(in

other

words,

multiple

users

sharing

a

single

user

identity

in

a

single

user

registry,

which

although

supported

is

not

advised).

An

administrator

can

represent

any

user

registry

of

any

type

in

EIM.

EIM

is

an

open

architecture

that

administrators

may

use

to

represent

identity

mapping

relationships

for

any

registry.

It

does

not

require

copying

existing

data

to

a

new

repository

and

trying

to

keep

both

copies

synchronized.

The

only

new

data

that

EIM

introduces

is

the

relationship

information.

Administrators

manage

this

data

in

an

LDAP

directory,

which

provides

the

flexibility

of

managing

the

data

in

one

place

and

having

replicas

wherever

the

information

is

used.

Ultimately,

EIM

gives

enterprises

and

application

developers

the

flexibility

to

easily

work

in

a

wider

range

of

environments

with

less

cost

than

would

be

possible

without

this

support.

Introducing

EIM

Chapter

1.

Enterprise

Identity

Mapping

(EIM)

3

4

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

2.

EIM

concepts

A

conceptual

understanding

of

how

Enterprise

Identity

Mapping

(EIM)

works

is

necessary

to

fully

understand

how

you

can

use

EIM

in

your

enterprise.

Although

the

configuration

and

implementation

of

EIM

APIs

can

differ

among

server

platforms,

EIM

concepts

are

common

across

IBM

eserver

servers.

The

following

figure

provides

an

EIM

implementation

example

in

an

enterprise.

Three

servers

act

as

EIM

clients

and

contain

EIM-enabled

applications

that

request

EIM

data

using

lookup

operations.

The

domain

controller

stores

information

about

the

EIM

domain,

which

includes

an

EIM

identifier

,

associations

between

these

EIM

identifiers

and

user

identities,

and

EIM

registry

definitions.

Review

the

following

information

to

learn

more

about

these

EIM

concepts:

v

“EIM

domain

controller”

on

page

6

v

“EIM

domain”

on

page

6

v

“EIM

identifier”

on

page

8

v

“EIM

registry

definition”

on

page

10

v

“EIM

associations”

on

page

13

v

“EIM

lookup

operation”

on

page

16

v

“Authorities”

on

page

17

EIM Clients

System A

EIM

app.

Domain
controller

EIM
Identifier

Associations

Registry
Definitions

W
ho

is
jsd1?

JO
H
N
D

EIM Domain

EIM Clients

System B

EIM

app.

EIM Clients

System C

EIM

app.

EIM
Mapping
lookup
operations

Figure

1.

Overview

of

an

EIM

implementation.

This

shows

a

typical

EIM

implementation.

©

Copyright

IBM

Corp.

2004

5

EIM

domain

controller

The

EIM

domain

controller

is

a

Lightweight

Directory

Access

Protocol

(LDAP)

server

that

is

configured

to

manage

at

least

one

EIM

domain.

An

EIM

domain

is

an

LDAP

directory

that

consists

of

all

the

EIM

identifiers,

EIM

associations,

and

user

registries

that

are

defined

in

that

domain.

Systems

(EIM

clients)

participate

in

the

EIM

domain

by

using

the

domain

data

for

EIM

lookup

operations.

A

minimum

of

one

EIM

domain

controller

must

exist

in

the

enterprise.

Currently,

you

can

configure

some

IBM

platforms

to

act

as

an

EIM

domain

controller.

Any

system

that

supports

the

EIM

APIs

can

participate

as

a

client

in

the

domain.

These

client

systems

use

EIM

APIs

to

contact

an

EIM

domain

controller

to

perform

EIM

lookup

operations.

Refer

to

“EIM

lookup

operation”

on

page

16

for

more

information.

The

location

of

the

EIM

client

determines

whether

the

EIM

domain

controller

is

a

local

or

remote

system.

The

domain

controller

is

local

if

the

EIM

client

is

running

on

the

same

system

as

the

domain

controller.

The

domain

controller

is

remote

if

the

EIM

client

is

running

on

a

separate

system

from

the

domain

controller.

EIM

domain

An

EIM

domain

is

a

directory

within

a

Lightweight

Directory

Access

Protocol

(LDAP)

server

that

contains

EIM

data

for

an

enterprise.

An

EIM

domain

is

the

collection

of

all

the

EIM

identifiers,

EIM

associations,

and

user

registries

that

are

defined

in

that

domain.

Systems

(EIM

clients)

participate

in

the

domain

by

using

the

domain

data

for

EIM

lookup

operations.

An

EIM

domain

is

different

from

a

user

registry.

A

user

registry

defines

a

set

of

user

identities

known

to

and

trusted

by

a

particular

instance

of

an

operating

system

or

application.

A

user

registry

also

contains

the

information

needed

to

authenticate

the

user

of

the

identity.

Additionally,

a

user

registry

often

contains

other

attributes

such

as

user

preferences,

system

privileges,

or

personal

information

for

that

identity.

In

contrast,

an

EIM

domain

refers

to

user

identities

that

are

defined

in

user

registries.

An

EIM

domain

contains

information

about

the

relationship

between

identities

in

various

user

registries

(user

name,

registry

type,

and

registry

instance)

and

the

actual

people

or

entities

that

these

identities

represent.

Because

EIM

tracks

relationship

information

only,

there

is

nothing

to

synchronize

between

user

registries

and

EIM.

The

following

figure

shows

the

data

that

is

stored

within

an

EIM

domain.

This

data

includes

EIM

identifiers,

EIM

registry

definitions,

and

EIM

associations.

EIM

data

defines

the

relationship

between

user

identities

and

the

people

or

entities

that

these

identities

represent

in

an

enterprise.

6

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

EIM

data

includes:

EIM

identifier

Each

EIM

identifier

that

you

create

represents

a

person

or

entity

(such

as

a

print

server

or

a

file

server)

within

an

enterprise.

See

“EIM

identifier”

on

page

8

for

more

information

about

this

concept.

EIM

registry

definition

Each

EIM

registry

definition

that

you

create

represents

an

actual

user

registry

(and

the

user

identity

information

it

contains)

that

exists

on

a

system

within

the

enterprise.

Once

you

define

a

specific

user

registry

in

EIM,

that

user

registry

can

participate

in

the

EIM

domain.

See

“EIM

registry

definition”

on

page

10

for

more

information

about

this

concept.

EIM

association

Each

EIM

association

that

you

create

represents

the

relationship

between

an

EIM

identifier

and

an

associated

identity

within

an

enterprise.

You

create

associations

for

identities

in

user

registries

that

are

participating

in

the

EIM

domain.

Associations

provide

the

information

that

ties

an

EIM

identifier

to

a

specific

user

identity

in

a

specific

user

registry.

Consequently,

associations

must

be

defined

so

that

EIM

clients

can

use

EIM

APIs

to

perform

successful

EIM

lookup

operations.

These

EIM

lookup

operations

search

an

EIM

domain

for

defined

associations

between

EIM

identifiers

and

user

identities

in

recognized

user

registries.

See

“EIM

lookup

operation”

on

page

16

for

more

information

about

this

concept.

Once

you

create

your

EIM

identifiers,

registry

definitions,

and

associations,

you

can

begin

using

EIM

to

more

easily

organize

and

work

with

user

identities

within

your

enterprise.

EIM
Identifier

Associations

Registry
definitions

Figure

2.

EIM

domain

and

the

data

that

is

stored

within

the

domain

Chapter

2.

EIM

concepts

7

EIM

identifier

An

EIM

identifier

represents

a

person

or

entity

in

an

enterprise.

A

typical

network

consists

of

various

hardware

platforms

and

applications

and

their

associated

user

registries.

Most

platforms

and

many

applications

use

platform-specific

or

application-specific

user

registries.

These

user

registries

contain

all

of

the

user

identification

information

for

users

who

work

with

those

servers

or

applications.

When

you

create

an

EIM

identifier

and

associate

it

with

the

various

user

identities

for

a

person

or

entity,

it

becomes

easier

to

build

heterogeneous,

multiple-tier

applications,

for

example,

a

single

sign-on

environment.

When

you

create

an

EIM

identifier

and

associations,

it

also

becomes

easier

to

build

and

use

tools

that

simplify

the

administration

involved

with

managing

every

user

identity

that

a

person

or

entity

has

within

the

enterprise.

EIM

identifier

representing

a

person

The

following

figure

shows

an

example

of

an

EIM

identifier

that

represents

a

person

named

John

Day

and

his

various

user

identities

in

an

enterprise.

In

this

example,

the

person

John

Day

has

four

user

identities

in

four

different

user

registries,

which

are

johnday,

jsd1,

JOHND,

and

JDay.

In

EIM,

you

can

create

associations

that

define

the

relationships

between

the

John

Day

identifier

and

each

of

the

different

user

identities

for

John

Day.

By

creating

these

associations

to

define

these

relationships,

you

and

others

can

write

applications

that

use

the

EIM

APIs

to

look

up

a

needed,

but

unknown,

user

identity

based

on

a

known

user

identity.

EIM

identifier

representing

an

entity

In

addition

to

representing

users,

EIM

identifiers

can

represent

entities

within

your

enterprise

as

Figure

4

illustrates.

For

example,

often

the

print

server

function

in

an

enterprise

runs

on

multiple

systems.

In

the

following

example,

there

are

three

print

User registry identities

johnday

jsd1

JOHND

Jday

John Day

Identifier

Figure

3.

The

relationship

between

the

EIM

identifier

for

a

real

person,

John

Day,

and

his

various

user

identities.

8

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

servers

in

the

enterprise

running

on

three

different

systems

under

three

different

user

identities

of

pserverID1,

pserverID2,

and

pserverID3

With

EIM,

you

can

create

a

single

identifier

that

represents

the

print

server

function

within

the

entire

enterprise.

In

this

example,

the

EIM

identifier

print

server

function

represents

the

actual

print

server

function

entity

in

the

enterprise.

Associations

are

created

to

define

the

relationships

between

the

EIM

identifier

(print

server

function)

and

each

of

the

user

identities

for

this

function

(pserverID1,

pserverID2,

and

pserverID3).

These

associations

allow

application

developers

to

use

EIM

lookup

operations

to

find

a

specific

print

server

function.

Application

providers

can

then

write

distributed

applications

that

manage

the

print

server

function

more

easily

across

the

enterprise.

EIM

identifiers

and

aliasing

You

can

also

create

aliases

for

EIM

identifiers.

Aliases

can

aid

in

locating

a

specific

EIM

identifier

when

performing

an

EIM

lookup

operation.

For

example,

aliases

can

be

useful

in

situations

where

someone’s

legal

name

is

different

from

the

name

that

that

person

is

known

as.

EIM

identifier

names

must

be

unique

within

an

EIM

domain.

Aliases

can

help

address

situations

where

using

unique

identifier

names

can

be

difficult.

For

example,

different

individuals

within

an

enterprise

can

share

the

same

name,

which

can

be

confusing

if

you

are

using

proper

names

as

EIM

identifiers.

The

following

figure

illustrates

an

example

in

which

an

enterprise

has

two

users

named

John

S.

Day.

The

EIM

administrator

creates

two

different

EIM

identifiers

to

distinguish

between

them:

John

S

Day1

and

John

S.

Day2.

However,

which

real

John

S.

Day

is

represented

by

each

of

these

identifiers

is

not

readily

apparent.

pserverID1

pserverID2

pserverID3

User
registry
identities

Print server function

Identifier

Figure

4.

The

relationship

between

the

EIM

identifier

that

represents

the

printer

server

function,

and

the

various

identities

for

that

function.

Chapter

2.

EIM

concepts

9

By

using

aliases,

the

EIM

administrator

can

provide

additional

information

about

the

individual

for

each

EIM

identifier.

This

information

can

also

be

used

in

an

EIM

lookup

operation

to

distinguish

between

the

users

that

the

identifier

represents.

For

example,

the

alias

for

John

S.

Day1

might

be

John

Samuel

Day

and

the

alias

for

John

S.

Day2

might

be

John

Steven

Day.

Each

EIM

identifier

can

have

multiple

aliases

to

identify

which

John

S.

Day

the

EIM

identifier

represents.

The

EIM

administrator

might

add

another

alias

to

each

of

the

EIM

identifiers

for

the

two

individuals

to

further

distinguish

between

them.

For

example,

the

additional

aliases

might

contain

each

user’s

employee

number,

department

number,

job

title,

or

other

distinguishing

attribute.

EIM

registry

definition

An

EIM

registry

definition

represents

an

actual

user

registry

that

exists

on

a

system

within

the

enterprise.

A

user

registry

operates

like

a

directory

and

contains

a

list

of

valid

user

identities

for

a

particular

system

or

application.

A

basic

user

registry

contains

user

identities

and

their

passwords.

One

example

of

a

user

registry

is

the

z/OS

Security

Server

Resource

Access

Control

Facility

(RACF)

registry.

User

registries

can

contain

other

information

as

well.

For

example,

a

Lightweight

Directory

Access

Protocol

(LDAP)

directory

contains

bind

distinguished

names,

passwords,

and

access

controls

to

data

that

is

stored

in

LDAP.

Other

examples

of

common

user

registries

are

a

Kerberos

key

distribution

center

(KDC)

and

the

OS/400

user

profiles

registry.

EIM

registry

definitions

provide

information

regarding

those

user

registries

in

an

enterprise.

The

administrator

defines

these

registries

to

EIM

by

providing

the

following

information:

v

A

unique,

arbitrary

EIM

registry

name

v

The

type

of

user

registry

Each

registry

definition

represents

a

specific

instance

of

a

user

registry.

Consequently,

you

should

choose

an

EIM

registry

definition

name

that

helps

you

to

identify

the

particular

instance

of

the

user

registry.

For

example,

you

could

choose

the

TCP/IP

host

name

for

a

system

user

registry,

or

the

host

name

combined

with

John S. Day1
Alias= John Sam uel Day

John S. Day2
Alias= John Steven Day

EIM Identifier

Figure

5.

Aliases

for

the

two

EIM

identifiers

based

on

the

shared

proper

name,

John

S.

Day.

10

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

the

name

of

the

application

for

an

application

user

registry.

You

can

use

any

combination

of

alphanumeric

characters,

mixed

case,

and

spaces

to

create

unique

EIM

registry

definition

names.

In

the

following

figure,

the

administrator

creates

EIM

registry

definitions

for

user

registries

representing

System

A,

System

B,

and

System

C.

For

example,

System

A

contains

a

user

registry

for

WebSphere

Lightweight

Third-Party

Authentication

(LTPA).

The

registry

definition

name

that

the

administrator

uses

helps

to

identify

the

specific

occurrence

of

the

type

of

user

registry.

For

example,

an

IP

address

or

host

name

is

often

sufficient

for

many

types

of

user

registries.

In

this

example,

the

administrator

identifies

the

specific

user

registry

instance

by

using

System_A_WAS

as

the

registry

definition

name.

In

addition

to

the

name,

the

administrator

also

provides

the

type

of

registry

as

WebSphere

LTPA.

You

can

also

define

user

registries

that

exist

within

other

user

registries.

For

example,

the

z/OS

Security

Server

(RACF)

registry

can

contain

specific

user

registries

that

are

a

subset

of

users

within

the

overall

RACF

user

registry.

For

a

more

detailed

example

of

how

this

works,

see

“System

and

application

registry

definitions”

on

page

12.

EIM

registry

definitions

and

aliasing

You

can

also

create

aliases

for

EIM

registry

definitions.

You

can

use

predefined

alias

types

or

you

can

define

your

own

alias

types

to

use.

The

predefined

alias

types

include:

v

Domain

Name

System

(DNS)

host

name

v

Kerberos

realm

v

Issuer

distinguish

name

(DN)

v

Root

distinguished

name

(DN)

v

TCP/IP

address

v

LDAP

DNS

host

name

Registry
definitions

Registry
name

System_A_WAS

System_B

System_C

Type

WebSphere
LTPA

Linux

OS/400

System A

System B

System C

OS/400

System A user registry

User identity
johnday
maryann
bobsmith

Password

System B user registry

User identity
jsd1
ma1
bts1

Password

System C user registry

User identity
JOHND
MARA
BOBS

Password

Figure

6.

EIM

registry

definitions

for

three

real-world

user

registries

Chapter

2.

EIM

concepts

11

This

alias

support

allows

programmers

to

write

applications

without

having

to

know

in

advance

the

arbitrary

EIM

registry

name

chosen

by

the

administrator

who

deploys

the

application.

Application

documentation

can

provide

the

EIM

administrator

with

the

alias

name

and

type

and

type

that

the

application

uses.

Using

this

information,

the

EIM

administrator

can

assign

this

alias

name

to

the

EIM

registry

definition

that

represents

the

actual

user

registry

that

the

administrator

wants

the

application

to

use.

When

the

administrator

adds

the

alias

to

the

EIM

registry

definition,

the

application

can

perform

an

alias

lookup

to

find

the

EIM

registry

name

at

initialization.

The

alias

lookup

allows

the

application

to

determine

the

EIM

registry

name

or

names

to

use

as

input

to

the

APIs

that

perform

“EIM

lookup

operation”

on

page

16.

System

and

application

registry

definitions

Some

applications

use

a

subset

of

user

identities

within

a

single

instance

of

a

user

registry.

EIM

allows

administrators

to

model

this

scenario

by

providing

two

kinds

of

EIM

registry

definitions,

system

and

application.

A

system

registry

definition

represents

a

distinct

registry

within

a

workstation

or

server.

You

can

create

a

system

registry

definition

when

the

registry

in

the

enterprise

has

one

of

the

following

traits:

v

The

registry

is

provided

by

an

operating

system,

such

as

AIX,

OS/400,

or

a

security

management

product

such

as

z/OS

Security

Server

Resource

Access

Control

Facility

(RACF).

v

The

registry

contains

user

identities

that

are

unique

to

a

specific

application,

such

as

Lotus

Notes.

v

The

registry

contains

distributed

user

identities,

such

as

Kerberos

principals

or

Lightweight

Directory

Access

Protocol

(LDAP)

distinguished

names.

An

application

registry

definition

represents

a

subset

of

user

identities

that

are

defined

in

a

system

registry.

These

user

identities

share

a

common

set

of

attributes

or

characteristics

that

allow

them

to

use

a

particular

application

or

set

of

applications.

You

can

create

an

application

registry

definition

when

the

user

identities

have

the

following

traits:

v

The

user

identities

for

the

application

or

set

of

applications

are

not

stored

in

a

user

registry

specific

to

the

application

or

set

of

applications.

v

The

user

identities

for

the

application

or

set

of

applications

are

stored

in

a

system

registry

that

contains

user

identities

for

other

applications.

EIM

lookup

operations

perform

correctly

regardless

of

whether

an

EIM

administrator

defines

a

registry

either

as

system

or

application.

However,

separate

registry

definitions

allow

mapping

data

to

be

managed

on

an

application

basis.

The

responsibility

of

managing

application-specific

mappings

can

be

assigned

to

an

administrator

for

a

specific

registry.

For

example,

the

following

figure

shows

how

an

EIM

administrator

created

a

system

registry

definition

to

represent

a

z/OS

Security

Server

RACF

registry.

The

administrator

also

created

an

application

registry

definition

to

represent

the

user

identities

within

the

RACF

registry

that

use

z/OS

UNIX

System

Services

(z/OS

UNIX).

System

C

contains

a

RACF

user

registry

that

contains

information

for

three

user

identities,

DAY1,

ANN1,

and

SMITH1.

Two

of

these

user

identities

(DAY1

and

SMITH1)

access

z/OS

UNIX

on

System

C.

These

user

identities

are

actually

RACF

users

with

unique

attributes

that

identify

them

as

z/OS

UNIX

users.

Within

the

EIM

registry

definitions,

the

EIM

administrator

defined

System_C_RACF

to

represent

the

12

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

overall

RACF

user

registry.

The

administrator

also

defined

System_C_UNIX

to

represent

the

user

identities

that

have

z/OS

UNIX

attributes.

EIM

associations

An

EIM

association

is

a

relationship

between

an

EIM

identifier

that

represents

a

specific

person

and

a

single

user

identity

in

a

user

registry

that

also

represents

that

person.

When

you

create

associations

between

an

EIM

identifier

and

all

of

a

person’s

or

entity’s

user

identities,

you

provide

a

single,

complete

understanding

of

how

that

person

or

entity

uses

the

resources

in

an

enterprise.

EIM

provides

APIs

that

allow

applications

to

find

an

unknown

user

identity

in

a

specific

(target)

user

registry

by

providing

a

known

user

identity

in

some

other

(source)

user

registry.

This

process

is

called

identity

mapping.

Before

you

can

create

an

association,

you

first

must

create

the

appropriate

EIM

identifier

and

the

appropriate

EIM

registry

definition

for

the

user

registry

that

contains

the

associated

user

identity.

An

association

defines

a

relationship

between

an

EIM

identifier

and

a

user

identity

by

using

the

following

information:

v

EIM

identifier

name

v

User

identity

name

v

EIM

registry

definition

name

v

Association

type

An

administrator

can

create

different

types

of

associations

between

an

EIM

identifier

and

a

user

identity

based

on

how

the

user

identity

is

used.

User

identities

can

be

used

for

authentication,

authorization,

or

both.

Authentication

is

the

process

of

verifying

that

an

entity

or

person

who

provides

a

user

identity

has

the

right

to

assume

that

identity.

Verification

is

often

accomplished

by

forcing

the

person

who

submits

the

user

identity

to

provide

secret

or

private

information

associated

with

the

user

identity,

such

as

a

password.

Authorization

is

the

process

of

ensuring

that

a

properly

authenticated

user

identity

can

only

perform

functions

or

access

resources

for

which

the

identity

has

been

given

privileges.

In

the

past,

nearly

all

applications

were

forced

to

use

the

user

identities

in

a

single

user

registry

for

both

authentication

and

authorization.

By

using

EIM

lookup

operations,

applications

now

can

use

user

identities

in

one

user

registry

z/OS Security
Server RACF

System C

z/OS
UNIX

RACF user registry

DAY1
ANN1
SMITH1

YES
NO
YES

OSVM user?

Registry name

System_C_RACF
System_C_UNIX
System_A_WAS

Registry
definitions

RACF
RACF
Websphere LTPA

EIM

Figure

7.

EIM

registry

definitions

for

both

the

RACF

user

registry

and

for

a

subset

of

the

RACF

registry

Chapter

2.

EIM

concepts

13

for

authentication

while

using

associated

user

identities

in

a

different

user

registry

for

authorization.

Refer

to

“EIM

lookup

operation”

on

page

16

for

more

information.

In

EIM,

there

are

three

types

of

associations

that

an

administrator

can

define

between

an

EIM

identifier

and

a

user

identity.

These

types

are

source,

target,

and

administrative

associations.

Source

association

When

a

user

identity

is

used

for

authentication,

that

user

identity

should

have

a

source

association

with

an

EIM

identifier.

A

source

association

allows

the

user

identity

to

be

used

as

the

source

in

an

EIM

lookup

operation

to

find

a

different

user

identity

that

is

associated

with

the

same

EIM

identifier.

If

a

user

identity

with

only

a

source

association

is

used

as

the

target

identity

in

an

EIM

lookup

operation,

no

associated

user

identities

are

returned.

target

administration

When

a

user

identity

is

used

for

authorization

rather

than

for

authentication,

that

user

identity

should

have

a

target

association

with

an

EIM

identifier.

A

target

association

allows

the

user

identity

to

be

returned

as

the

result

of

an

EIM

lookup

operation.

If

a

user

identity

with

only

a

target

association

is

used

as

the

source

identity

in

an

EIM

lookup

operation,

no

associated

user

identities

are

returned.

It

might

be

necessary

to

create

both

a

target

and

a

source

association

for

a

single

user

identity.

This

is

required

when

an

individual

uses

a

single

system

as

both

a

client

and

a

server

or

for

individuals

who

act

as

administrators.

For

example,

a

user

normally

authenticates

to

a

Windows

platform

and

runs

applications

that

access

an

AIX

server.

Because

of

the

user’s

job

responsibilities,

the

user

must

occasionally

also

log

directly

into

an

AIX

server.

In

this

situation

you

would

create

both

source

and

target

associations

between

the

AIX

user

identity

and

the

person’s

EIM

identifier.

User

identities

that

represent

end

users

normally

need

a

target

association

only.

The

following

figure

shows

an

example

of

a

source

and

a

target

association.

In

this

example,

the

administrator

created

two

associations

for

the

EIM

identifier

John

Day

to

define

the

relationship

between

this

identifier

and

two

associated

user

identities.

The

administrator

created

a

source

association

for

johnday,

the

WebSphere

Lightweight

Third-Party

Authentication

(LTPA)

user

identity

in

the

System_A_WAS

user

registry.

The

administrator

also

created

a

target

association

for

jsd1,

the

OS/400

user

profile

in

the

System

B

user

registry.

These

associations

provide

a

means

for

applications

to

obtain

an

unknown

user

identity

(the

target,

jsd1

)

based

on

a

known

user

identity

(the

source,

johnday)

as

part

of

an

EIM

lookup

operation.

14

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

administrative

association

An

administrative

association

for

an

EIM

identifier

is

typically

used

to

show

that

the

person

or

entity

represented

by

the

EIM

identifier

owns

a

user

identity

that

requires

special

considerations

for

a

specified

system.

This

type

of

association

can

be

used,

for

example,

with

highly

sensitive

user

registries.

Due

to

the

nature

of

what

an

administrative

association

represents,

an

EIM

lookup

operation

that

supplies

a

source

user

identity

with

an

administrative

association

returns

no

results.

Similarly,

a

user

identity

with

an

administrative

association

is

never

returned

as

the

result

of

an

EIM

lookup

operation.

The

following

figure

shows

an

example

of

an

administrative

association.

In

this

example,

John

Day

has

one

user

identity

on

System

A

and

another

user

identity

on

System

B,

which

is

a

highly

secure

system.

The

system

administrator

wants

to

ensure

that

users

authenticate

to

System

B

by

using

only

the

local

user

registry

of

this

system.

The

administrator

does

not

want

to

allow

an

application

to

authenticate

John

Day

to

the

system

by

using

some

foreign

authentication

mechanism.

By

using

an

administrative

association

for

the

JDay

user

identity

on

System

B,

the

EIM

administrator

can

see

that

John

Day

owns

an

account

on

System

B,

but

EIM

does

not

return

information

about

the

JDay

identity

in

EIM

lookup

operations.

Even

if

applications

exist

on

this

system

that

use

EIM

lookup

operations,

they

cannot

find

user

identities

that

have

administrative

associations.

EIM
Identifier

johnday

User
Identity

John Day

system_A_WAS

Registry
Name

Source

Association
Type

jsd1

User
Identity

John Day

Registry
Name

Target

Association
Type

EIM
Identifier

S
O

U
R

C
E

User identity

johnday

User identity

JOHND

T
A

R
G

E
T

John Day

EIM Identifier

system_B_WAS

Figure

8.

EIM

target

and

source

associations

for

the

EIM

identifier

John

Day

Chapter

2.

EIM

concepts

15

EIM

lookup

operation

An

EIM

lookup

operation

is

a

process

through

which

an

application

or

operating

system

finds

an

unknown

associated

user

identity

in

a

specific

target

registry

by

supplying

some

known

and

trusted

information.

Applications

that

use

EIM

APIs

can

perform

these

EIM

lookup

operations

on

information

only

if

that

information

is

stored

in

the

EIM

domain.

An

application

can

perform

one

of

two

types

of

EIM

lookup

operations

based

on

the

type

of

information

the

application

supplies

as

the

source

of

the

EIM

lookup

operation:

a

user

identity

or

an

EIM

identifier.

When

an

application

supplies

a

user

identity

as

the

source,

the

application

also

must

supply

the

EIM

registry

definition

name

for

the

source

user

identity

and

the

EIM

registry

definition

name

that

is

the

target

of

the

EIM

lookup

operation.

To

be

used

as

the

source

in

a

EIM

lookup

operation,

a

user

identity

must

have

a

source

association

defined

for

it.

Refer

to

“EIM

associations”

on

page

13

for

more

information.

When

an

application

supplies

an

EIM

identifier

as

the

source

of

the

EIM

lookup

operation,

the

application

must

also

supply

the

EIM

registry

definition

name

that

is

the

target

of

the

EIM

lookup

operation.

For

a

user

identity

to

be

returned

as

the

target

of

either

type

of

EIM

lookup

operation,

the

user

identity

must

have

a

target

association

defined

for

it.

The

supplied

information

is

passed

to

the

EIM

domain

controller

where

all

EIM

information

is

stored

and

the

EIM

lookup

operation

searches

for

the

source

JDay

User
Identity

John Day System B

Registry
Name

Administrative

Association
TypeIdentifier

John Day

Identifier

User identity

JDay

A
D

M
IN

IS
T

R
A

T
IV

E

Figure

9.

EIM

administrative

associations

for

the

EIM

identifier,

John

Day

16

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

association

that

matches

the

supplied

information.

Based

on

the

EIM

identifier

(supplied

to

the

API

or

determined

from

the

source

association

information),

the

EIM

lookup

operation

then

searches

for

a

target

association

for

that

identifier

that

matches

the

target

EIM

registry

definition

name.

In

Figure

10,

the

user

identity

johnday

authenticates

to

the

Websphere

Application

Server

by

using

Lightweight

Third-Party

Authentication

(LPTA)

on

System

A.

The

Websphere

Application

Server

on

System

A

calls

a

native

program

on

System

B

to

access

data

on

System

B.

The

native

program

uses

an

EIM

API

to

perform

an

EIM

lookup

operation

based

on

the

user

identity

on

System

A

as

the

source

of

the

operation.

The

application

supplies

the

following

information

to

perform

the

operation:

johnday

as

the

source

user

identity,

System_A_WAS

as

the

source

EIM

registry

definition

name,

and

System_B

as

the

target

EIM

registry

definition

name.

This

source

information

is

passed

to

the

EIM

domain

controller

and

the

EIM

lookup

operation

finds

a

source

association

that

matches

the

information.

Using

the

EIM

identifier

name,

the

EIM

lookup

operation

searches

for

a

target

association

for

the

John

Day

identifier

that

matches

the

target

EIM

registry

definition

name

for

System_B.

When

the

matching

target

association

is

found,

the

EIM

lookup

operation

returns

the

jsd1

user

identity

to

the

application.

Authorities

EIM

authorities

allow

a

user

to

perform

specific

administrative

tasks

or

EIM

lookup

operations.

Only

users

with

EIM

administrator

authority

are

allowed

to

grant

or

revoke

authorities

for

other

users.

EIM

authorities

are

granted

only

to

user

identities

that

are

known

to

the

EIM

domain

controller.

The

following

are

brief

descriptions

of

the

functions

that

each

EIM

authority

group

can

perform:

Source
user identity

Source
registry name

Target
registry name

Target
user identity

johnday System_A_WAS System_B ?

EIM
identifier

User
identity

Registry name
Association

type

John Day johnday System_A_WAS Source

EIM
identifier

User
identity

Registry
name

Association
type

John Day jsd1 System_B

T
a
rg

e
t

jsd1

John Day

EIM Identifier

S
o
u
rc

e

User identity

johnday

User identity

jsd1

Target

EIM
app.

System B User registry

jsd1

johnday

System A System B

Figure

10.

EIM

lookup

operation

based

on

the

known

user

identity

johnday

Chapter

2.

EIM

concepts

17

Lightweight

Directory

Access

Protocol

(LDAP)

administrator

This

authority

allows

the

user

to

configure

a

new

EIM

domain.

A

user

with

this

authority

can

perform

the

following

functions:

v

Create

a

domain

v

Delete

a

domain

v

Create

and

remove

EIM

identifiers

v

Create

and

remove

an

EIM

registry

definition

v

Create

and

remove

source,

target,

and

administrative

associations

v

Perform

EIM

lookup

operations

v

Retrieve

associations,

EIM

identifiers,

and

EIM

registry

definitions

v

Add,

remove,

and

list

EIM

authority

information

EIM

administrator

This

authority

allows

the

user

to

manage

all

of

the

EIM

data

within

this

EIM

domain.

A

user

with

this

authority

can

perform

the

following

functions:

v

Delete

a

domain

v

Create

and

remove

EIM

identifiers

v

Create

and

remove

an

EIM

registry

definition

v

Create

and

remove

source,

target,

and

administrative

associations

v

Perform

EIM

lookup

operations

v

Retrieve

associations,

EIM

identifiers,

and

EIM

registry

definitions

v

Add,

remove,

and

list

EIM

authority

information

EIM

identifiers

administrator

This

authority

allows

the

user

to

add

and

change

EIM

identifiers

and

manage

source

and

administrative

associations.

A

user

with

this

authority

can

perform

the

following

functions:

v

Create

an

EIM

identifier

v

Add

and

remove

source

associations

v

Add

and

remove

administrative

associations

v

Perform

EIM

lookup

operations

v

Retrieve

associations,

EIM

identifiers,

and

EIM

registry

definitions

EIM

mapping

lookup

This

authority

allows

the

user

to

conduct

EIM

lookup

operations.

A

user

with

this

authority

can

perform

the

following

functions:

v

Perform

EIM

lookup

operations

v

Retrieve

associations,

EIM

identifiers,

and

EIM

registry

definitions

EIm

registries

administrator

This

authority

allows

the

user

to

manage

all

EIM

registry

definitions.

A

user

with

this

authority

can

perform

the

following

functions:

v

Add

and

remove

target

associations

v

Perform

EIM

lookup

operations

v

Retrieve

associations,

EIM

identifiers,

and

EIM

registry

definitions

EIM

registry

X

administrator

This

authority

allows

the

user

to

manage

a

specific

EIM

registry

definition.

This

authority

allows

a

user

to:

v

Add

and

remove

target

associations

for

the

EIM

registry

definition

v

Perform

EIM

lookup

operations

18

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

v

Retrieve

associations,

EIM

identifiers,

and

EIM

registry

definitions

Each

of

the

following

tables

is

organized

by

the

EIM

task

that

the

API

performs.

Each

table

displays

each

EIM

API,

the

different

EIM

authorities,

and

the

access

each

of

these

authorities

has

to

certain

EIM

functions.

Table

1.

Working

with

domains

EIM

API

LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin

for

selected

registries

eimChangeDomain

X

X

eimCreateDomain

X

eimDeleteDomain

X

X

eimListDomains

X

X

Table

2.

Working

with

identifiers

EIM

API

LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin

for

selected

registries

eimAddIdentifier

X

X

X

eimChangeIdentifier

X

X

X

eimListIdentifier

X

X

X

X

X

X

eimRemoveIdentifier

X

X

Table

3.

Working

with

registries

EIM

API

LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin

for

selected

registries

eimApplicationRegistry

X

X

eimAddSystemRegistry

X

X

eimChangeRegistry

X

X

X

X

eimChangeRegistryUser

X

X

X

X

eimChangeRegistryAlias

X

X

X

X

eimListRegistries

X

X

X

X

X

X

eimListRegistryAliases

X

X

X

X

X

X

eimListRegistyUsers

X

X

X

X

X

X

eimRemoveRegisty

X

X

For

eimAddAssociation()

and

eimRemoveAssociation()

APIs

there

are

four

parameters

that

determine

the

type

of

association

that

is

either

being

added

or

removed.

The

authority

to

these

APIs

differs

based

on

the

type

of

association

specified

in

these

parameters.

In

the

following

table,

the

type

of

association

is

included

for

each

of

these

APIs.

Chapter

2.

EIM

concepts

19

Table

4.

Working

with

associations

EIM

API

LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin

for

selected

registries

eimAddAssociation

(admin)

X

X

X

eimAddAssociation

(source)

X

X

X

eimAddAssociation

(target)

X

X

X

X

eimListAssociations

X

X

X

X

X

X

eimRemoveAssociation

(admin)

X

X

X

eimRemoveAssociation

(source)

X

X

X

eimRemoveAssociation

(target)

X

X

X

X

Table

5.

Working

with

mappings

EIM

API

LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin

for

selected

registries

eimGetAssociated

Ientifier

X

X

X

X

X

X

eimGetRegistryFromAlias

X

X

X

X

X

X

eimGetTargetFromIdentifier

X

X

X

X

X

X

eimGetTargetFromSource

X

X

X

X

X

X

Table

6.

Working

with

access

EIM

API

LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin

for

selected

registries

eimAddAccess

X

X

eimListAccess

X

X

eimListUserAccess

X

X

eimRemoveAccess

X

X

eimQueryAccess

X

X

20

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

3.

Planning

for

EIM

This

chapter

provides

the

information

you

need

to

understand

the

task

of

implementing

EIM

on

your

IBM

server

platform.

This

chapter

also

provides

the

information

you

need

to:

v

Understand

the

task

of

implementing

EIM

v

Determine

which

skills

are

required

to

complete

your

implementation

team

and

create

your

own

implementation

plan

This

chapter

explores

the

following

topics:

v

“Identifying

skill

requirements”

–

“Team

members”

v

“Planning

for

EIM

client

applications”

on

page

23

–

“Planning

for

an

EIM

domain”

on

page

24

–

“Planning

for

EIM

registries”

on

page

24

–

“Planning

considerations

for

identifiers”

on

page

25

–

“Planning

considerations

for

associations”

on

page

26

–

“Accessing

the

EIM

domain”

on

page

26

v

“Planning

considerations

for

an

EIM

domain

controller”

on

page

27

v

“Planning

EIM

administration

tools”

on

page

28

v

“Customizing

EIM

on

your

operating

system”

on

page

29

v

“Task

roadmap

for

implementing

EIM”

on

page

29

Before

you

begin:

The

EIM

administrator

needs

to

plan

carefully

for

the

EIM

domain.

Before

setting

up

the

domain,

consider

the

following:

v

What

applications

will

refer

to

the

EIM

domain?

v

On

what

systems

will

the

applications

run?

v

Which

system

or

application

registries

need

to

participate

in

the

domain?

v

What

identifiers

do

you

need

to

add?

v

What

associations

need

to

be

added

between

the

identifiers

and

the

user

IDs

in

the

registries?

Identifying

skill

requirements

The

implementation

of

EIM

requires

the

interaction

of

several

software

products,

each

with

its

own

required

skills.

This

means

that

your

team

can

consist

of

people

from

several

different

disciplines,

particularly

if

you

work

with

a

large

organization.

This

section

provides

the

information

you

need

to

determine

which

skills

are

required

to

complete

your

implementation.

These

skills

are

presented

as

job

titles

for

people

who

specialize

in

those

skills.

For

example,

a

task

requiring

MVS

skills

is

referred

to

as

a

task

for

a

″z/OS

system

programmer″.

Consequently,

if

some

of

your

team

members

have

multiple

skills

you

might

require

fewer

individuals

to

complete

your

team.

Team

members

The

following

describes

the

responsibilities

and

roles

involved

in

administering

EIM.

It

also

defines

potential

team

members

for

installing

and

configuring

prerequisite

products,

and

setting

up

EIM.

©

Copyright

IBM

Corp.

2004

21

|

An

EIM

domain

can

be

administered

by

the

LDAP

administrator

alone,

by

an

EIM

administrator,

or

this

responsibility

can

be

divided

so

the

domain

can

be

administered

by

all

of

the

EIM

administrators.

Therefore

it

is

advisable

to

appoint

these

administrators

early

and

involve

them

in

your

planning.

Tip:

EIM

administrators

play

an

important

role

in

your

organization.

The

decisions

they

make

when

creating

associations

between

an

identifier

and

a

user

ID

in

a

registry

can

determine

who

can

access

your

computer

systems

and

what

privileges

they

have

when

doing

so.

IBM

recommends

that

you

give

this

authority

to

those

individuals

in

whom

you

have

a

high

level

of

trust.

The

following

table

lists

team

members

(alphabetically)

and

the

tasks

and

skills

needed

for

setting

up

EIM:

Table

7.

Roles,

tasks,

and

skills

for

setting

up

EIM

Role

Tasks

Required

Skills

EIM

administrator

Responsibilities

include:

v

Coordinating

domain

operations

v

Adding,

removing,

and

changing

registries,

identifiers,

and

associations

between

identifiers

and

user

IDs

in

registries

v

Granting

and

removing

access

to

the

data

kept

within

an

EIM

domain

Knowledge

of

the

EIM

administration

tool

you

are

using

EIM

identifier

administrator

Responsibilities

include:

v

Creating

identifiers

v

Modifying

identifiers

v

Adding

and

removing

only

administrative

and

source

associations

(cannot

add

or

remove

target

associations)

Knowledge

of

the

EIM

administration

tool

you

are

using

EIM

registries

administrator

Responsibilities

include:

v

Managing

all

registries

–

Adding

and

removing

only

target

associations

(cannot

add

or

remove

administrative

or

source

associations)

–

Updating

registries

Knowledge

of:

v

The

registries

(such

as

information

dealing

with

user

IDs)

v

The

EIM

administration

tool

you

are

using

EIM

registry

X

administrator

Responsibilities

include:

v

Managing

individual

registries

–

Adding

and

removing

only

target

associations

(cannot

add

or

remove

administrative

or

source

associations)

–

Updating

registry

Knowledge

of:

v

The

particular

registry

(such

as

information

dealing

with

user

IDs)

v

The

EIM

administration

tool

you

are

using

Planning

22

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

Table

7.

Roles,

tasks,

and

skills

for

setting

up

EIM

(continued)

Role

Tasks

Required

Skills

LDAP

administrator

Responsibilities

include:

v

Installing

and

configuring

LDAP

(if

not

already

done)

v

Customizing

LDAP

configuration

for

EIM

v

Creating

an

EIM

domain

v

Defining

users

that

can

bind

with

the

EIM

domain

controller

v

Defining

the

first

EIM

administrator

(optional)

Knowledge

of:

v

LDAP

installation,

configuration,

and

customization

v

EIM

administration

tool

you

are

using

User

registry

administrator

Responsibilities

include:

v

Setting

up

user

profiles

v

Serving

as

EIM

registry

administrator

(optional)

Knowledge

of:

v

Tools

for

administering

the

user

registry

v

EIM

administration

tool

you

are

using

System

programmer

Responsibilities

include

installing

EIM

and

other

software

products

Knowledge

of:

v

System

programming

skills

v

Installation

procedures

for

the

platform

Application

programmer

Writes

C/C++

applications

using

EIM

APIs

Knowledge

of

v

Platform

v

C/C++

programming

skills

v

Compiling

programs

Planning

for

EIM

client

applications

Before

you

begin:

If

you

are

installing

an

IBM

or

vendor-written

application

that

exploits

EIM,

check

the

product

documentation

for

the

hardware

and

software

prerequisites,

the

specific

installation

procedures,

and

configuration

procedures.

Generally,

the

applications

that

use

EIM

must

run

on

a

system

where

the

EIM

APIs

and

the

LDAP

client

are

installed.

The

EIM

APIs

are

supported

on

the

following

hardware

and

software

platforms:

Table

8.

EIM

APIs

software

and

hardware

prerequisites

EIM

APIs

LDAP

client

Platform

Included

in

AIX

AIX

V5R2

AIX

z/OS

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

included

in

z/OS

z/OS

Integrated

Security

Services

LDAP

z/OS

Included

in

OS/400

V5R2

OS/400

Directory

Services

OS/400

Web

download

IBM

Directory

Server

Linux

Windows

2000

Available

by

Web

download:

http://wcs.haw.ibm.com/

servers/eserver/security/

Windows2000

Planning

Chapter

3.

Planning

for

EIM

23

|

Tip:

If

you

are

writing

your

own

application

to

use

EIM,

the

table

above

can

provide

guidance

on

which

platforms

the

applications

can

use.

Planning

activities

for

an

EIM

application

include:

1.

Identifying

the

information

that

is

stored

in

the

EIM

domain

as

well

as

hardware

and

software

prerequisites.

For

example,

the

next

couple

of

sections

describes

what

information

needs

to

go

into

an

EIM

domain

2.

Using

the

worksheets

for

recording

the

information

required

by

the

EIM

application

you

are

working

with.

The

EIM

administrator

can

take

the

information

from

the

worksheets

and

perform

the

tasks

necessary

to

set

up

an

EIM

domain

Planning

for

an

EIM

domain

Planning

for

EIM

application

begins

with

the

EIM

domain.

This

domain

might

represent

your

entire

enterprise,

a

division,

a

department,

or

even

an

application.

Plan

for

the

domain

to

be

shared

between

many

applications

in

order

to

gain

the

maximum

benefit

from

having

a

centralized

repository

for

mapping

information.

When

setting

up

your

domain

you

must:

1.

Determine

whether

or

not

there

is

an

existing

domain

to

use,

or

if

one

should

be

created

2.

Name

the

domain

(you

can

also

provide

an

optional

description)

Record

your

answers

in

Table

9.

Table

9.

Domain

worksheet

for

creating

an

EIM

domain

Parameter

name

and

description

Customized

value

description—

A

string

that

provides

a

description

of

the

object

you

are

acting

upon.

domainDN

—

The

distinguished

name

of

the

EIM

domain.

This

consists

of:

v

ibm-eimDomainName=

v

domainName

—

The

name

of

the

EIM

domain

you

are

creating,

for

example:

My

Domain.

(This

could

be

the

name

of

a

company,

a

department,

or

an

application

that

uses

the

domain.)

v

parentDN

—

The

distinguished

name

for

the

entry

immediately

above

the

given

entry

in

the

directory

information

tree

hierarchy,

for

example:

o=ibm,c=us

Example:

ibm-eimDomainName=MyDomain,o=ibm,c=us

Planning

for

EIM

registries

The

registries

that

must

be

defined

in

an

EIM

domain

are

the

ones

required

by

the

EIM

lookup

and

administration

applications

that

will

be

using

the

domain.

The

registries

can

represent

operating

system

registries

such

as

RACF

or

OS/400,

a

distributed

registry

such

as

Kerberos,

or

a

subset

of

a

system

registry

that

is

used

exclusively

by

an

application.

Consider

the

following

when

planning

for

your

registries:

Planning

24

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|

|
|
|

|
|
|

|

v

An

EIM

domain

can

contain

registries

that

exist

on

any

platform.

A

domain

controller

on

z/OS

might

contain

registries

for

non-z/OS

platforms

and

an

EIM

domain

controller

on

a

non-z/OS

platform

might

contain

a

z/OS

registry,

such

as

RACF.

v

The

names

given

to

an

EIM

registry

can

represent

the

type

of

registry,

the

system

the

actual

registry

is

on,

its

network

address

or

its

physical

location

in

your

enterprise.

v

The

number

of

registries

that

can

be

defined

in

a

domain

is

limited

by

the

size

of

the

LDAP

directory

server

where

the

EIM

domain

is

stored.

Tips:

v

Since

there

might

be

many

registries

to

consider

(source

and

target),

you

can

use

the

following

worksheet

to

accommodate

some

of

your

planning

tasks,

such

as

recording

the

registries

the

EIM

application

uses.

(Note

that

an

application

might

not

use

all

of

the

available

types

of

associations.)

The

worksheet

can

also

be

used

to

record

a

registry

alias

used

by

the

application.

You

can

fill

out

one

of

these

worksheets

for

each

application

using

the

EIM

domain.

v

The

installation

and

configuration

information

for

the

application

should

tell

you

what

types

of

registries

it

requires,

whether

or

not

registry

aliases

are

used,

and

the

type

of

associations

between

the

registry

user

identities

and

EIM

identifiers

the

application

requires.

Table

10.

Registry

worksheet

to

help

with

planning

considerations

for

EIM

registries

and

associations

Registry

name

Registry

type

Registry

alias

Association

types

required

Registry

description

Planning

considerations

for

identifiers

Part

of

your

planning

activities

for

an

EIM

application

focuses

on

the

users

of

the

application

who

need

an

identifier

in

the

EIM

domain.

Consequently,

to

ease

administration

it

is

important

that

you

create

unique

identifiers.

Tip:

For

a

domain

that

does

not

contain

a

large

number

of

identifiers

you

might

be

able

to

use

the

actual

names.

However,

for

a

domain

containing

a

large

number

of

identifiers,

you

can

use

an

employee

number

for

the

identifier

and

use

the

real

name

in

the

identifier

as

an

alias.

Using

an

employee

number

allows

an

administrator

to

add

two

employees

who

happen

to

have

the

same

name.

Use

the

worksheet

below

as

a

guide

to

figuring

out

the

kind

of

information

the

EIM

administrator

will

need

know

about

the

identifiers

for

the

users

of

the

application.

The

identifier

description

and

additional

information

fields

are

free-form

and

can

be

used

to

for

descriptive

information

about

the

user.

Table

11.

Identifier

worksheet

to

help

with

planning

considerations

for

identifiers

Unique

name

Identifier

alias

Identifier

description

Additional

information

Planning

Chapter

3.

Planning

for

EIM

25

|
|
|
|

|
|
|

|
|

|
|
|
|
|

Planning

considerations

for

associations

Associations

are

defined

relationships

between

an

identifier

and

a

user

ID

in

a

registry.

Tip:

Only

add

those

associations

to

an

EIM

domain

that

are

required

by

the

EIM

applications

that

are

using

the

domain.

There

might

be

some

user

IDs

in

a

physical

registry

that

don’t

have

mappings

within

an

EIM

domain.

The

number

of

associations

that

can

be

defined

in

a

domain

is

limited

by

the

size

of

the

LDAP

directory

server

where

the

EIM

domain

is

stored.

There

is

no

hard

limit

to

the

number

of

associations

that

can

be

defined

between

an

identifier

and

user

IDs,

and

between

a

user

ID

and

identifiers.

Tip:

While

there

are

no

limits

to

the

combinations

of

associations

that

can

be

defined,

it

is

best

to

keep

the

number

to

a

minimum

to

simplify

the

administration

of

your

EIM

domain.

The

application

provides

guidance

on

the

registry

types

it

expects,

the

association

types

required,

and

if

additional

information

must

be

defined

for

target

associations.

Tip:

As

you

plan

for

your

EIM

applications,

use

the

following

worksheet

as

a

guideline

for

the

kind

of

information

the

EIM

administrator

needs

to

set

up

the

associations.

For

each

end

user

of

the

application,

there

needs

to

be

at

least

one

association

between

their

unique

identifier

and

a

user

ID

in

the

required

registry.

Table

12.

Registry

user

worksheet

to

help

with

planning

considerations

for

EIM

associations

Registry

user

name

Registry

name

Unique

identifier

name

Association

type

required

Additional

information

(target

associations

only)

Accessing

the

EIM

domain

To

access

an

EIM

domain

you

must:

1.

Be

able

to

bind

to

the

EIM

domain

controller

You

must

first

determine

the

appropriate

bind

mechanism

to

connect

to

the

domain

controller.

EIM

APIs

support

several

different

mechanism

for

establishing

a

connection

with

the

EIM

domain

controller,

each

providing

a

different

level

of

authentication

and

encryption

of

the

connection.

The

possible

choices

are:

Simple

Binds

A

simple

bind

is

an

LDAP

connection

where

an

LDAP

client

provides

a

bind

distinguished

name

and

a

bind

password

to

the

LDAP

server

for

authentication.

The

bind

distinguished

name

and

bind

password

are

defined

by

the

LDAP

administrator

in

the

LDAP

directory.

Server

authentication

with

SSL

-

server

side

authentication

An

LDAP

server

can

be

configured

for

SSL

or

TLS

secure

connection.

The

LDAP

client

and

LDAP

server

use

digital

certificates

to

encrypt

the

connection.

Only

the

LDAP

server

is

authenticated.

A

bind

distinguished

name

and

password

are

used

to

authenticate

the

end

user.

Planning

26

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|
|

|
|
|
|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Client

authentication

using

SSL

Provides

an

additional

level

of

authentication.

The

LDAP

server

is

configured

to

require

both

LDAP

client

and

LDAP

server

to

be

authenticated

before

a

connection

is

established.

Digital

certificates

are

used

by

the

LDAP

client

instead

of

bind

distinguished

names

and

passwords,

and

the

connection

is

encrypted.

Kerberos

authentication

An

LDAP

client

can

be

authenticated

to

the

server

using

Kerberos,

which

is

a

trusted

third-party,

private

key,

network

authentication

system.

The

choice

of

a

bind

mechanism

is

based

on

the

level

of

security

required

by

the

EIM

application

and

the

authentication

mechanisms

supported

by

the

LDAP

server

hosting

the

EIM

domain.

The

LDAP

server

might

also

require

additional

configuration

to

enable

the

desired

authentication

mechanism.

You

must

check

the

documentation

(for

the

LDAP

server

you

are

using

for

your

domain

controller)

for

details

on

how

to

perform

the

configuration.

2.

Make

sure

that

the

bind

subject

is

a

member

of

an

EIM

authority

group.

Refer

to

“Authorities”

on

page

17

for

more

information.

To

access

the

EIM

domain,

you

must

belong

to

an

EIM-defined

LDAP

access

control

group

or

be

the

LDAP

administrator.

There

are

several

access

control

groups

that

are

involved

in

maintaining

an

EIM

domain.

Members

of

the

groups

have

the

ability

to

update

or

view

different

portions

of

the

EIM

domain.

For

information

on

team

members

for

these

groups,

see

“Team

members”

on

page

21.

Tip:

Use

the

worksheet

below

as

a

guide

when

considering

the

information

needed

by

the

application

to

access

the

EIM

domain.

The

EIM

application

provides

guidance

on

the

types

of

bind

mechanisms

and

the

EIM

authorities

it

requires

of

end

users.

The

values

entered

here

are

used

by

the

LDAP

administrator

to

define

the

bind

identity

to

the

LDAP

directory

server,

and

the

EIM

administrator

to

give

the

bind

identity

access

to

the

EIM

domain.

EIM

applications

that

perform

lookups

typically

require

EIM

mapping

operations

authority.

Table

13.

Bind

worksheet

to

help

in

planning

for

accessing

the

EIM

domain

Bind

identity

Bind

mechanism

EIM

authorities

required

Planning

considerations

for

an

EIM

domain

controller

Restriction:

EIM

requirements

on

LDAP

include

the

following:

v

An

LDAP

directory

server

that

supports

the

LDAP

(Version

3)

protocol.

It

must

also

understand

the

following

attributes:

–

ibm-entryUUID

attribute

–

ibmattributetypes:

acIEntry,

acIPropagate,

acISource,

entryOwner,

ownerPropagate,

ownerSource

–

New

attribute

types

and

object

classes

for

EIM

(schema

updates)

Table

14

on

page

28

lists

the

LDAP

servers

that

can

be

used

as

an

EIM

domain

controller.

Planning

Chapter

3.

Planning

for

EIM

27

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

||

|||

|||

|||

|||
|

|

|

Table

14.

Software

and

hardware

worksheet

to

help

in

planning

for

your

EIM

domain

controller

LDAP

servers

Operating

system

Hardware

IBM

Directory

Server

v5.1

AIX,

Linux,

Windows

2000

pSeries

or

xSeries™

z/OS

V1R4

Security

Server

LDAP

z/OS

V1R4

zSeries™

OS/400

Directory

Services

OS/400

iSeries

After

reviewing

the

LDAP

directory

servers

available

to

you,

you

can

record

your

choice

in

the

work

sheet

below.

Table

15.

Information

needed

for

LDAP

administration

Parameter

name

and

description

Customized

value

ldapHost

—

This

consists

of:

v

The

string

ldap://

or

ldaps://

v

The

host

name

or

IP

address

v

The

port

number

(this

is

optional)

Example:

ldap://some.ldap.host:389

ldaps://some.ldap.host

Rule:

The

LDAP

server

must

be

configured

for

your

desired

bind

mechanisms

in

order

for

them

to

operate

successfully.

Refer

to

“Accessing

the

EIM

domain”

on

page

26

for

more

information.

Planning

EIM

administration

tools

Some

basic

steps

that

must

be

performed

in

order

to

set

up

an

EIM

domain

are:

1.

Creating

the

domain

and

define

the

EIM

administrator

2.

Creating

the

registries

used

by

the

applications

3.

Adding

the

identifiers

4.

Adding

the

associations

The

EIM

administrator

uses

the

data

recorded

in

the

worksheets

provided

to

perform

these

tasks.

These

worksheets

are

located

at

“Planning

for

EIM

client

applications”

on

page

23.

Currently,

IBM

offers

several

tools

an

administrator

can

use

to

manage

the

content

of

an

EIM

domain,

such

as

the

iSeries

Navigator

or

the

z/OS

eimadmin

utility.

Software

vendors

might

also

offer

administration

tools

in

the

future.

More

information

can

be

found

in

product

documentation

about

the

hardware

and

software

prerequisites

for

the

tools,

installation,

and

configuration

procedures.

Rule:

Generally,

administration

tools

must

run

on

a

system

where

the

EIM

APIs

and

the

LDAP

client

are

installed

If

you

plan

to

use

the

z/OS

eimadmin

utility,

remember

it

is

part

of

z/OS

Integrated

Security

Services

Enterprise

Identity

Mapping.

(The

eimadmin

command

is

issued

from

the

z/OS

UNIX

System

Services

shell.)

Planning

28

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|

Customizing

EIM

on

your

operating

system

The

platform

that

supports

EIM

might

provide

some

unique

customizations

to

allow

EIM

applications

to

take

advantage

of

operating

system

specific

features.

For

example,

on

z/OS

the

z/OS

Security

Server

RACF

provides

RACF

profiles

that

allow

a

security

administrator

to

define

the

EIM

domain

used

by

an

application

and

the

necessary

bind

credentials.

Task

roadmap

for

implementing

EIM

Table

16

shows

the

tasks

and

associated

procedures

for

implementing

EIM

on

z/OS.

These

tasks

will

constitute

a

major

part

of

your

implementation

plan.

Your

implementation

plan

should

include

major

tasks,

responsibile

parties,

and

a

realistic

estimate

of

time

and

effort

required.

The

major

tasks

for

implementing

EIM

are

provided

here

as

a

basis

for

you

to

build

your

own

plan.

Table

16.

Tasks

for

implementing

EIM

on

z/OS

Tasks

Associated

procedures

for

z/OS

Install

and

configure

the

EIM

domain

controller

Refer

to

“Steps

for

installing

and

configuring

the

EIM

domain

controller

on

z/OS”

on

page

31.

Install

and

configure

the

EIM

administration

utility

Refer

to

“Installing

and

configuring

EIM

on

z/OS”

on

page

33.

Use

RACF

commands

to

set

up

and

tailor

EIM

Refer

to

Chapter

5,

“Using

RACF

commands

to

set

up

and

tailor

EIM,”

on

page

47.

Ongoing

administration

tasks

Refer

to

“Steps

for

using

the

eimadmin

utility

to

manage

an

EIM

domain”

on

page

34.

Planning

Chapter

3.

Planning

for

EIM

29

Planning

30

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

4.

Setting

up

EIM

on

z/OS

If

you

are

using

EIM

on

z/OS,

many

of

the

topics

discussed

previously

are

still

applicable.

This

chapter

additionally

(and

specifically)

explores:

v

“Domain

authentication

methods”

on

page

38

v

“Steps

for

installing

and

configuring

the

EIM

domain

controller

on

z/OS”

v

“Installing

and

configuring

EIM

on

z/OS”

on

page

33

v

“Steps

for

using

the

eimadmin

utility

to

manage

an

EIM

domain”

on

page

34

v

“Installation

considerations

for

applications”

on

page

40

It

also

explores

topics

about

ongoing

administration,

such

as:

v

“Managing

registries”

on

page

41

–

“Adding

a

system

and

application

registry”

on

page

41

–

“Removing

a

registry”

on

page

41

v

“Working

with

registry

aliases”

on

page

42

–

“Assigning

an

alias”

on

page

42

–

“Removing

an

alias”

on

page

42

–

“Assigning

an

alias

name

to

a

different

registry”

on

page

43

v

“Adding

a

new

user”

on

page

43

–

“Adding

an

identifier”

on

page

43

–

“Adding

associations”

on

page

44

v

“Removing

a

user”

on

page

45

–

“Removing

associations”

on

page

45

–

“Removing

an

identifier”

on

page

45

v

“Changing

access

authority”

on

page

45

–

“Adding

access

authorities”

on

page

45

–

“Removing

access

authorities”

on

page

46

Steps

for

installing

and

configuring

the

EIM

domain

controller

on

z/OS

Before

you

begin:

1.

You

will

need

LDAP

skills

to

complete

this

procedure.

2.

You

will

need

to

refer

to

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use.

Rule:

Also,

for

the

z/OS

Integrated

Security

Services

LDAP

server,

the

following

requirements

must

be

met:

v

APAR

OW55078

(PTF

UW92346)

must

be

applied.

v

LDAP

must

be

configured

to

use

the

TDBM

backend.

v

The

SDBM

(RACF)

backend

is

optional.

1.

First,

perform

the

following

steps

to

install

and

configure

LDAP:

a.

Use

the

following

table

to

decide

what

you

first

need

to

do:

©

Copyright

IBM

Corp.

2004

31

|
|

|

|

|

|

|

If

...

Then...

Notes

You

do

not

have

LDAP

installed

and

configured...

Follow

the

instructions

in

the

Administration

section

of

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

to

configure

the

TDBM

backend.

The

schemas:

1.

schema.user.ldif

2.

schema.IBM.ldif

You

have

LDAP

installed

and

configured

for

the

RDBM

backend

but

not

the

TDBM

backend...

Migrate

to

the

TDBM

backend.

See

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

for

details

about

how

to

do

this.

If

you

are

using

RDBM,

you

must

migrate

to

TDBM.

Refer

to

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use.

You

have

LDAP

installed

and

configured

for

the

SDBM

backend

but

not

the

TDBM

backend...

Follow

the

instructions

in

the

Administration

section

of

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

to

configure

the

TDBM

backend.

The

schemas

schema.IBM.ldif

and

schema.user.ldif

need

to

be

loaded.

You

have

LDAP

installed

and

configured

for

the

TDBM

backend...

Go

to

the

next

step.

This

assumes

you

have

loaded

schema.IBM.ldif

and

schema.user.ldif.

You

plan

to

use

RACF

user

IDs

and

passwords

to

bind

within

the

EIM

domain

controller...

Follow

the

instructions

in

the

Administration

section

of

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

to

configure

the

SDBM

backend

for

EIM.

Perform

the

following

steps

for

the

decision

you

have

made.

b.

The

z/OS

Integrated

Security

Services

LDAP

server

must

be

configured

to

accept

the

different

types

of

bind

requests.

The

information

from

worksheet

Table

13

on

page

27

lists

the

bind

mechanisms

required

by

the

EIM

client

applications

using

this

EIM

domain

controller.

See

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

for

more

details.

c.

Start

the

z/OS

LDAP

server

as

described

in

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use.

d.

Load

the

schema

definitions.

Rule:

If

you

are

migrating

from

a

pre-z/OS

Version

1

Release

4

LDAP

server,

schema.IBM.ldif

must

be

loaded.

Refer

to

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

for

migration

considerations

that

apply.

Attention:

v

An

EIM

domain

must

be

updated

using

the

EIM

APIs

or

administrative

applications

that

use

the

EIM

APIs.

IBM

does

not

recommend

using

the

LDAP

utilities

and

LDAP

client

APIs

to

update

information

in

an

EIM

domain.

v

Do

not

alter

the

EIM

schema

definitions

unless

directed

to

do

so

by

your

IBM

Service

representative

during

problem

diagnosing.

Restriction:

z/OS

LDAP

by

default

has

a

511–character

limit

on

the

length

of

a

distinguished

name

for

an

entry.

If

this

default

length

is

exceeded,

message

ITY0023

(indicating

an

unexected

LDAP

error)

is

issued,

indicating

that

DB2

needs

to

be

reconfigured

to

support

longer

distinguished

names.

This

error

might

show

up

when

working

with

long

identifier,

registry,

domain

names

or

suffixes.

See

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

for

more

details.

2.

Second,

consider

the

options

you

have

for

setting

up

an

EIM

domain

that

includes

z/OS:

32

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||||

|
|
|
|
|
|
|

|

|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
||
|
|

|
|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

a.

Use

LDAP

on

z/OS

as

the

domain

controller.

(z/OS

and

non-z/OS

applications

could

access

the

data.)

The

LDAP

server

on

z/OS

must

be

configured

with

the

TDBM

backend.

If

you

plan

to

use

RACF

user

IDs

and

passwords

for

the

bind

credentials,

configure

the

server

with

the

SDBM

and

the

TDBM

backends.

b.

Set

up

the

z/OS

LDAP

server

in

multi-server

mode.

This

configuration

has

multiple

LDAP

servers

sharing

the

same

TDBM

backend

store,

which

is

useful

if

you

want

to

balance

the

work

load

between

your

LDAP

servers.

c.

The

z/OS

EIM

application

can

access

a

domain

controller

that

resides

on

another

platform.

Figure

11

represents

a

basic

z/OS

configuration.

Installing

and

configuring

EIM

on

z/OS

Your

z/OS

system

programmer

uses

SMP/E

to

install

EIM

into

an

HFS

directory.

By

default,

EIM

is

installed

in

the

/usr/lpp/eim

directory,

but

your

system

programmer

can

determine

whether

to

change

the

default

for

these

directories.

Table

17

on

page

34

lists

important

directories

for

EIM

installation.

Your

system

programmer

should

review

the

rightmost

column

of

this

table,

crossing

out

any

defaults

that

have

changed

and

recording

the

correct

directory

names.

Tip:

An

EIM

administrator

who

uses

the

eimadmin

utility

might

desire

that

the

directory

for

the

eimadmin

utility

be

placed

in

the

PATH

environment

variable.

This

enables

the

ability

to

run

the

utility

without

having

to

specify

the

path

when

issuing

the

command

(or

changing

to

the

/usr/lpp/eim/bin

directory

prior

to

issuing

the

command).

The

PATH

enviroment

variable

can

be

modified

to

include

the

EIM

programs

directory

by

issuing

the

following

command

from

a

shell

prompt:

export

PATH=$PATH:/usr/lpp/eim/bin

EIM Application

EIM Application

LDAP

other platform

z/OS

other platform

EIM Application

EIM Application

LDAP

TDBM
(DB2)

SDBM
(RACF)

EIM Application z/OS
LDAP TDBM

(DB2)

EIM Application z/OS
LDAP

multi-server
mode w/ or
w/o dynamic
WLM

z/OS

z/OS

other platform

Figure

11.

EIM

configurations

involving

z/OS

Chapter

4.

Setting

up

EIM

on

z/OS

33

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

This

adds

the

EIM

programs

directory

to

the

end

of

the

list

of

directories

to

search

for

programs.

Add

the

export

command

to

a

user’s

.profile

file

so

that

each

time

the

user

enters

a

shell,

the

PATH

is

updated.

Table

17.

HFS

install

directories

Directory

and

description

Default

value

or

customized

value

Main

install

directory

/usr/lpp/eim

EIM

library

directory;

contains

the

runtime

library(eim.dll)

and

the

definition

side

deck

file(eim.x)

for

linking

EIM

applications

Note:

Note:

These

files

are

also

symbolically

linked

in

the

/usr/lib

directory.

/usr/lpp/eim/lib

Message

catalog

directories

Note:

Files

in

C

directory

are

symbolically

linked

to

the

En_US.IBM-1047

directory

message

catalog

files.

There

are

additional

symlinks

of

the

En_US.IBM-1047

message

catalog

files

in

the

/usr/lib/nls/msg/C

and

/usr/lib/nls/msg/En_US.IBM-1047

directories.

Additionally,

there

are

symbolic

links

to

the

message

catalog

files

in

the

Ja_JP

directory

in

the

/usr/lib/nls/msg/Ja_JP

directory

/usr/lpp/eim/lib/nls/msg/En_US.IBM-1047

,

/usr/lpp/eim/lib/nls/msg/C,

and

/usr/lpp/eim/lib/nls/msg/Ja_JP

C/C++

header

files

for

the

EIM

API

prototypes,

defined

data

types,

and

message

catalog

constants

Note:

The

header

files

are

also

symbolically

linked

in

the

/usr/include

directory.

/usr/lpp/eim/include

EIM

programs

directory

(which

is

where

the

eimadmin

utility

program

is

located)

/usr/lpp/eim/bin

EIM

man

page

directory

Note:

There

is

a

symbolic

link

to

the

man

page

in

the

/usr/man/C/cat1

and

/usr/man/En_US.IBM-1047/cat1

directories..

/usr/lpp/eim/man/En_US.IBM-1047/cat1

and

/usr/lpp/eim/man/C/cat1

Steps

for

using

the

eimadmin

utility

to

manage

an

EIM

domain

Before

you

begin:

This

section

provides

an

example

of

issuing

the

eimadmin

command

to

perform

tasks

such

as:

v

Creating

an

EIM

domain

v

Granting

administration

authority

v

Adding

registries

v

Adding

enterprise

identifiers

v

Defining

associations

You

need

to

be

familiar

with

this

command.

Refer

to

Chapter

8,

“The

eimadmin

utility,”

on

page

77

and

familiarize

yourself

with

the

eimadmin

command.

Note:

The

eimadmin

utility

can

manage

an

EIM

domain

in

a

z/OS

or

non-z/OS

EIM

domain

controller.

Refer

to

for

“Planning

for

EIM

client

applications”

on

page

23

for

more

information.

You

can

perform

the

following

steps

to

create

and

manage

an

EIM

domain

using

the

eimadmin

utility.

Before

you

begin:

34

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

||

||

||

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|

|

|
|

|

|

|

|

|

|
|

|
|
|

|
|

v

The

eimadmin

utility

examples

can

be

entered

from

the

z/OS

UNIX

System

Services

shell

by

an

EIM

administrator.

v

For

improved

readability

each

command

option

is

shown

on

a

separate

line.

v

In

most

cases

you

specify

multiple

options

on

a

single

line,

separating

them

with

one

or

more

spaces.

v

If

necessary,

you

can

use

the

backslash

(\)

continuation

character

to

break

the

command

into

multiple

lines.

v

The

access

authority

required

for

successful

completion

depends

on

the

particular

eimadmin

operation

you

specify,

and

is

determined

by

the

bind

credential

you

specify

for

LDAP

authentication.

The

distinguished

name

that

LDAP

associates

with

the

credential

should

be

a

member

of

one

or

more

EIM

access

groups,

which

define

access

authority

to

EIM

data.

Refer

to

“Domain

authentication

methods”

on

page

38

for

a

description

of

supported

bind

methods.

To

create

the

domain:

1.

Create

an

EIM

domain

by

entering

a

command

such

as

the

following

from

the

z/OS

shell:

eimadmin

-aD

-d

domainDN

-n

description

-h

ldapHost

-b

bindDN

-w

bindPassword

The

bindDN

must

be

the

distinguished

name

for

the

LDAP

administrator.

(The

description

is

optional.)

Example:

The

following

command

creates

the

EIM

domain

″My

Domain″:

eimadmin

-aD

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-n

’An

EIM

Domain’

-h

ldap://some.ldap.host

-b

’cn=ldap

administrator’

-w

secret

Note:

This

assumes

that

the

″o=ibm,c=us″

objects

are

defined

in

the

LDAP

Directory.

If

these

objects

are

not

defined,

refer

to

“Example

for

creating

LDAP

suffix

and

user

objects”

on

page

288

for

assistance

in

defining

these

objects

if

necessary.

2.

Give

an

administrator

EIM

administrator

authority

to

the

domain

by

entering

a

command

such

as

the

following

from

the

z/OS

shell:

eimadmin

-aC

-d

domainDN

-c

ADMIN

-q

accessUser

-f

accessUserType

-h

ldapHost

-b

bindDN

-w

bindPassword

The

parameter

following

-c

is

the

accessType

parameter.

In

this

situation,

the

value

must

be

ADMIN.

The

bindDN

must

be

the

distinguished

name

for

the

LDAP

administrator.

Chapter

4.

Setting

up

EIM

on

z/OS

35

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

Tip:

If

you

plan

on

dividing

the

administration

responsibilities,

repeat

this

command

for

the

other

administrative

users.

Example:The

following

command

can

be

issued

by

the

LDAP

administrator

to

give

EIM

administrator,

″cn=eim

administrator,ou=dept20,o=ibm,c=us″,

authority

to

adminster

the

EIM

domain:

eimadmin

-aC

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-c

ADMIN

-q

’cn=eim

administrator,ou=dept20,o=ibm,c=us’

-f

DN

-h

ldap://some.ldap.host

-b

’cn=ldap

administrator’

-w

secret

Note:

This

assumes

that

the

″cn=eim

administrator,ou=dept20,o=ibm,c=us″

is

defined

in

the

LDAP

Directory.

If

this

object

is

not

defined,

refer

to

“Example

for

creating

LDAP

suffix

and

user

objects”

on

page

288

for

assistance

in

defining

these

objects

if

necessary.

3.

Add

registries

to

the

EIM

domain

by

entering

a

command

such

as

the

following

from

the

z/OS

shell:

eimadmin

-aR

-d

domainDN

-r

registryName

-y

registryType

-n

description

-h

ldapHost

-b

bindDN

-w

bindPassword

Note:

The

—y

parameter

specifies

registry

type.

(The

description

is

optional.)

See

page

84

for

details.

Examples:

The

following

command

adds

a

RACF

registry

to

the

EIM

domain

named

″My

Domain″:

eimadmin

-aR

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-r

’RACF

Pok1’

-y

RACF

-n

’the

RACF

Registry

on

Pok

System

1’

-h

ldap://some.ldap.host

-b

’cn=eim

administrator,ou=dept20,o=ibm,c=us’

-w

secret

The

following

command

adds

an

OS/400

registry

to

the

EIM

domain

named

″My

Domain″:

eimadmin

-aR

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-r

’OS400

RCH1’

-y

OS400

-n

’the

OS400

Registry

on

Rochester

System

1’

-h

ldap://some.ldap.host

-b

’cn=eim

administrator,ou=dept20,o=ibm,c=us’

-w

secret

36

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

4.

Add

enterprise

identifiers

to

the

domain

by

entering

a

command

such

as

the

following

from

the

z/OS

shell:

eimadmin

-aI

-d

domainDN

-i

identifier

-n

description

-h

ldapHost

-b

bindDN

-w

bindPassword

v

You

can

add

identifiers

at

any

time

after

creating

the

domain.

v

The

preceding

command

adds

a

single

identifier

to

the

domain.

Alternately,

you

can

add

multiple

identifiers

by

specifying

a

file

name

as

standard

input

to

the

eimadmin

utility.

Specifying

a

file

name

indicates

using

the

file

of

identifiers

as

input

for

batch

processing

of

multiple

identifiers.

Repeat

Step

4

as

needed.

The

bindDN

must

have

EIM

administrator

authority

or

EIM

Identifier

administrator

authority.

The

following

command

can

be

issued

by

the

EIM

administrator

add

to

an

EIM

identifier

to

the

domain

My

Domain:

eimadmin

-aI

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-i

’John

Adam

Day’

-h

ldap://some.ldap.host

-b

’cn=eim

administrator,ou=dept20,o=ibm,c=us’

-w

secret

5.

Create

associations

between

registry

user

IDs

and

identifiers

by

entering

commands

from

the

z/OS

shell

(One

or

more

of

the

association

types,

-t

source,

-t

target,

-t

admin,

are

required

on

the

command.):

eimadmin

-aA

-d

domainDN

-r

registryName

-u

userid

-i

identifier

-t

admin

-t

source

-t

target

-h

ldapHost

-b

bindDN

-w

bindPassword

The

following

command

creates

associations

between

the

user

ID

JD

in

the

RACF

Pok1

registry:

eimadmin

-aA

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-r

’RACF

Pok1’

-u

JD

-i

’John

Day’

-t

source

-t

target

-h

ldap://some.ldap.host

-b

’cn=eim

administrator,ou=dept20,o=ibm,c=us’

-w

secret

After

you

enter

these

commands,

you

can

use

the

domain

for

lookup

operations.

For

the

preceding

examples,

the

only

user

mappings

available

are

mappings

from

JD

to

JOHNDAY

and

from

JOHNDAY

to

JD.

Chapter

4.

Setting

up

EIM

on

z/OS

37

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

Notes:

1.

You

can

create

associations

only

after

registries

and

identifiers

are

in

place.

2.

The

command

creates

only

two

associations.

Conversely,

you

can

create

multiple

associations

by

specifying

a

file

name

as

standard

input

to

the

eimadmin

command.

Specifying

a

file

name

indicates

using

a

file

of

associations

as

input

for

batch

processing

of

multiple

associations.

Repeat

Step

5

on

page

37

as

needed.

6.

Give

users

lookup

access

to

the

EIM

domain.

eimadmin

-aC

-d

domainDN

-c

MAPPING

-q

accessUser

-f

DN

-h

ldapHost

-b

bindDN

-w

bindPassword

The

eimadmin

utility

allows

you

to

grant

access

one

user

at

a

time

or

a

list

of

users

can

be

provided

in

a

file

using

the

following

command:

eimadmin

-aC

-d

domainDN

-c

MAPPING

-h

ldapHost

-b

bindDN

-w

bindPassword

<input-fileName

The

file

must

contain

a

label

line

following

by

at

least

one

user

name.

For

example,

a

bind

distinguished

name,

and

the

type

of

the

user

name.

CU

;CS

;

cn=John

Day,c=us

DN

The

following

command

can

be

issued

by

the

EIM

administrator

add

to

give

the

end

user

John

Day

mapping

(lookup)

authority

to

the

domain

My

Domain:

eimadmin

-aC

-d

’ibm-eimDomainName=My

Domain,o=ibm,c=us’

-c

MAPPING

-q

’cn=John

Day,c=us’

-h

ldap://some.ldap.host

-b

’cn=eim

administrator,ou=dept20,o=ibm,c=us’

-w

secret

Domain

authentication

methods

Authentication

occurs

when

an

EIM

application

connects

(binds)

to

the

EIM

domain

controller.

z/OS

EIM

supports

the

following

three

authentication

methods

recognized

by

LDAP:

v

Simple

(with

or

without

CRAM-MD5

password

protection)

v

Digital

certificate

v

Kerberos

Your

LDAP

server

configuration

and

security

requirements

determine

which

method

you

choose.

The

examples

in

this

section

illustrate

how

you

can

use

these

methods

with

the

eimadmin

utility.

38

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|

|
|
|
|

|

|
|

|
|

|

|

|
|
|

|

|

|

|
|
|

This

informaton

explains

how

the

bind

credentials

specified

correspond

to

the

distinguished

name

that

LDAP

uses

for

access

checking.

Your

access

to

EIM

data

is

determined

by

the

authority

groups

of

which

the

distinguished

name

is

a

member.

The

exception

is

the

distinguished

name

for

the

LDAP

administrator

that

has

unrestricted

access.

Using

simple

binds

A

distinguished

name

and

password

are

sufficient

credentials

for

a

SIMPLE

eimadmin

connect

type.

eimadmin

-lD

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-S

SIMPLE

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Note:

Unless

an

SSL

session

has

been

established,

the

password

is

sent

over

the

network

in

plain

text,

making

this

method

the

least

secure.

The

distinguished

name

that

you

specify

is

the

one

LDAP

uses

for

access

checking.

Using

CRAM-MD5

password

protection

You

can

use

CRAM-MD5

for

simple

authentication

without

sending

the

bind

password

over

the

network

in

plain

text,

provided

both

client

and

server

support

the

method.

In

the

utility

command,

specify

the

connect

type

CRAM-MD5

to

indicate

simple

authentication

with

password

protection.

eimadmin

-lD

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-S

CRAM-MD5

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Using

digital

certificates

To

bind

using

a

digital

certificate,

specify

the

EXTERNAL

connect

type

on

the

eimadmin

command.

Ensure

the

host

name

identifies

a

secure

host:port

value

prefixed

with

ldaps://.

Rules:

v

You

must

also

specify

the

name

of

either

a

key

database

file

or

RACF

key

ring

that

contains

your

client

certificate.

v

You

must

specify

the

label

for

that

certificate

if

it

is

not

the

defined

default.

v

If

you

specify

a

key

database

file

but

not

its

password,

the

utility

prompts

you

for

it.
eimadmin

-lD

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldaps://secure.ldap.host

-S

EXTERNAL

-K

client.kdb

-P

clientpw

-N

eimadmincert

Note:

LDAP

uses

the

client

certificate’s

subject

distinguished

name

for

access

checking.

Chapter

4.

Setting

up

EIM

on

z/OS

39

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|

|
|

Using

Kerberos

To

bind

using

a

Kerberos

identity,

specify

connect

type

GSSAPI

on

the

eimadmin

command.

No

other

credential

information

is

required,

but

the

default

Kerberos

credential

must

have

been

established

through

a

service

such

as

kinit

prior

to

entering

the

command.

kinit

eimadministrator@realm.com

eimadmin

-lD

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-S

GSSAPI

For

access

checking,

LDAP

considers

a

distinguished

name

formed

by

prefixing

the

Kerberos

principal

name

with

″ibm-kgn=″

or

distinguished

names

located

through

special

mapping

or

searches.

See

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use

for

more

information.

Using

Secure

Sockets

Layer

(SSL)

You

can

establish

an

SSL

connection

along

with

any

of

the

supported

authentication

types

if

your

domain

controller

is

configured

as

a

secure

host

enabled

for

server

authentication.

A

secure

host

is

required

for

EXTERNAL

connect.

The

strength

of

SSL

is

that

data

transferred

over

the

connection

is

encrypted,

including

the

password

for

a

SIMPLE

bind.

The

eimadmin

utility

recognizes

the

need

for

an

SSL

connection

when

you

specify

an

LDAP

host

name

prefixed

ldaps://.

It

then

requires

that

you

specify

a

RACF

key

ring,

or

a

key

database

file

and

its

password.

Installation

considerations

for

applications

EIM

applications

on

z/OS

must

be

APF-authorized.

Requiring

APF

authorization

prevents

inadvertent

or

malicious

use

of

EIM

APIs

to

change

information

in

an

EIM

domain

or

to

extract

unauthorized

information.

See

“Preparing

to

run

an

EIM

application”

on

page

60

for

more

information.

Ongoing

administration

This

section

explains

how

to

perform

additional

administration

tasks:

v

Managing

registries

–

Adding

a

system

and

application

registry

–

Removing

a

registry

v

Assigning

an

alias

–

Assigning

an

alias

–

Removing

an

alias

–

Assigning

an

alias

to

a

different

registry

v

Adding

a

new

user

–

Adding

an

identifier

–

Adding

associations

v

Removing

a

user

–

Removing

associations

40

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|
|

–

Removing

an

identifier

v

Changing

access

authority

–

Adding

access

–

Removing

access

Managing

registries

A

domain

typically

contains

multiple

registries.

User

identities

for

a

particular

system

are

associated

with

a

system

registry,

while

a

subset

of

identities

might

be

associated

with

an

application

registry.

Adding

a

system

and

application

registry

Create

a

system

registry

by

entering

the

following

command:

eimadmin

-aR

-r

’RACF

Pok1’

-y

racf

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Enter

the

following

command

to

define

an

application

registry

that

is

dependent

on

a

previously-defined

system

registry:

eimadmin

-aR

-r

’App1’

-y

racf

-g

’RACF

Pok1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Note:

Once

you

define

an

application

registry,

you

can

refer

to

it

by

name

in

EIM

APIs

and

eimadmin

commands

without

having

to

identify

it

as

an

application-type

registry.

Listing

a

registry

You

can

list

any

registry

using

a

command

similar

to

the

following:

eimadmin

-lR

-r

’App1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Removing

a

registry

To

remove

a

registry,

issue

the

following

command:

eimadmin

-pR

-r

’App1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

All

associations

linked

to

the

registry

are

automatically

deleted.

Chapter

4.

Setting

up

EIM

on

z/OS

41

|
|
|

|

|
|
|
|
|
|
|

|

Attention:

EIM

refuses

to

remove

a

system

registry

if

any

application

registries

depend

on

it.

1.

You

can

find

the

dependents

that

you

must

remove

by

searching

for

all

occurrences

of

the

system

registry

name

in

the

output

from

the

following

command,

which

lists

all

registries:

eimadmin

-lR

-r

’*’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

2.

With

caution,

you

can

use

the

’-s

rmdeps’

option

of

eimadmin

to

remove

dependent

application

registries

automatically

when

removing

the

system

registry.

eimadmin

-s

rmdeps

-pR

-r

’RACF

Pok1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Working

with

registry

aliases

You

can

define

alias

names

to

facilitate

registry

administration.

By

establishing

aliases

that

applications

use

to

look

up

actual

registry

names,

you

can

make

non-disruptive

registry

changes

by

managing

alias

assignments.

Rule:

When

defining

or

referencing

a

registry

alias,

you

must

specify

an

associated

registry

type.

You

can

use

one

of

the

suggested

types

(refer

to

“eimChangeRegistryAlias”

on

page

132)

or

invent

your

own.

Assigning

an

alias

Enter

the

following

command

to

assign

an

alias

name

to

an

existing

registry:

eimadmin

-mR

-r

’RACF

Test

Pok1’

-x

’z/OS’

-z

’RACF’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

This

example

defines

the

alias

’z/OS’

(of

type

’RACF’)

for

registry

’RACF

Test

Pok1’.

Listing

an

alias

You

can

list

the

registry

and

its

aliases

using

the

following

command:

eimadmin

-lR

-r

’RACF

Test

Pok1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Removing

an

alias

You

can

delete

an

alias

for

a

registry

using

the

following

command:

42

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|

|

eimadmin

-eR

-r

’RACF

Test

Pok1’

-x

’z/OS’

-z

’RACF’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

This

example

removes

the

alias

z/OS’

(of

type

’RACF’)

for

registry

’RACF

Test

Pok1’.

Assigning

an

alias

name

to

a

different

registry

To

assign

an

alias

name

to

a

different

registry,

add

the

alias

name

and

type

to

the

registry

attributes

as

shown

in

the

example

for

adding

an

alias

name

to

a

registry

above.

Multiple

registries

can

have

the

same

registry

alias

values.

However,

if

you

want

the

alias

to

map

to

a

single

registry,

you

must

remove

that

alias

from

registries

in

which

is

was

previously

defined.

Enter

the

following

two

commands

to

reassign

alias

’z/OS’

from

registry

’RACF

Test

Pok1’

to

registry

’RACF

Pok1’:

eimadmin

-mR

-r

’RACF

Pok1’

-x

’z/OS’

-z

’RACF’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

eimadmin

-eR

-r

’RACF

Test

Pok1’

-x

’z/OS’

-z

’RACF’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Adding

a

new

user

You

can

create

an

new

EIM

identifier

to

represent

a

new

person

entering

your

enterprise.

As

the

person

is

given

access

to

each

system

or

application

through

its

user

registry,

you

can

define

an

EIM

association

between

the

EIM

identifier

and

the

corresponding

registry

defined

in

EIM.

Adding

an

identifier

When

you

create

a

new

EIM

identifier,

it

is

assigned

a

name

that

is

unique

within

the

domain.

The

eimadmin

utility

requires

that

you

specify

a

unique

name

(unlike

the

eimAddIdentifier

API

option

that

generates

a

unique

name

for

you).

You

can

assign

an

alternate

name,

or

alias,

to

multiple

identifiers.

This

non-unique

name

can

be

used

to

further

describe

the

represented

individual

or

to

serve

as

an

alternate

identifier

for

lookup

operations.

Enter

the

following

command

to

add

a

new

identifier

’John

S.

Day’

with

two

aliases:

Chapter

4.

Setting

up

EIM

on

z/OS

43

|
|

|
|
|

|
|

|
|
|

eimadmin

-aI

-i

’John

S.

Day’

-j

’654321’

-j

’Contractor’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

You

can

list

the

new

identifier

using

the

unique

name.

The

utility

returns

one

entry

only.

eimadmin

-lI

-i

’John

S.

Day’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

You

can

also

list

the

new

identifier

using

an

alias

name.

The

utility

returns

all

entries

having

’Contractor’

defined

as

an

alternate

name.

eimadmin

-lI

-j

’Contractor’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Adding

associations

You

can

register

the

system

and

application

user

IDs

assigned

to

the

individual

by

defining

EIM

associations

between

the

identifier

and

the

corresponding

registries.

Enter

the

following

command

to

create

source

and

target

associations

for

user

ID

’JD’

in

registry

’RACF

Pok1’:

eimadmin

-aA

-i

’John

S.

Day’

-r

’RACF

Pok1’

-u

’JD’

-t

source

-t

target

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Listing

associations

Enter

the

following

command

to

list

all

associations

for

’John

S.

Day’:

eimadmin

-lA

-i

’John

S.

Day’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

44

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

Removing

a

user

To

completely

erase

a

person’s

identity

from

your

EIM

domain,

remove

the

identifier.

If

you

only

need

to

reflect

the

deletion

of

a

user

ID

from

a

registry,

simply

remove

the

corresponding

EIM

associations.

Removing

associations

Enter

the

following

command

to

remove

the

source

and

target

associations

for

user

ID

’JD’

in

registry

’RACF

Pok1’:

eimadmin

-pA

-i

’John

S.

Day’

-r

’RACF

Pok1’

-u

’JD’

-t

source

-t

target

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Removing

an

identifier

Enter

the

following

command

to

remove

an

identifier

and

its

associations,

including

identifier

aliases:

eimadmin

-pI

-i

’John

S.

Day’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Changing

access

authority

A

user

is

permitted

to

perform

EIM

administrative

or

lookup

operations

based

on

the

authority

groups

containing

the

user’s

LDAP

distinguished

name

(DN).

The

user’s

DN

is

determined

by

the

credentials

authenticated

when

connecting

to

LDAP.

Suppose

a

user

has

registry

administrator

authority

over

a

specific

registry

and

your

task

is

to

switch

the

user’s

authority

to

a

different

registry.

You

can

accomplish

this

task

in

two

steps:

1.

Adding

the

user

to

the

new

registry

adminstrator

group

2.

Removing

the

user

from

the

prior

group

Adding

access

authorities

Enter

the

following

command

to

add

user

DN

’cn=Reggie

King,ou=dept20,o=ibm,c=us’

to

the

registry

administration

group

for

’RACF

Pok1’:

eimadmin

-aC

-q

’cn=Reggie

King,ou=dept20,o=ibm,c=us’

-f

DN

-c

registry

-r

’RACF

Pok1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Chapter

4.

Setting

up

EIM

on

z/OS

45

|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

Listing

access

authorities

Enter

the

following

command

to

list

all

EIM

access

authorities

for

the

user:

eimadmin

-lC

-q

’cn=Reggie

King,ou=dept20,o=ibm,c=us’

-f

DN

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

Removing

access

authorities

Enter

the

following

command

to

remove

the

user

from

the

prior

registry

administration

group

for

’RACF

Test

Pok1’:

eimadmin

-pC

-q

’cn=Reggie

King,ou=dept20,o=ibm,c=us’

-f

DN

-c

registry

-r

’RACF

Test

Pok1’

-d

’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h

ldap://some.ldap.host

-b

’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w

secret

46

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

Chapter

5.

Using

RACF

commands

to

set

up

and

tailor

EIM

An

EIM

administration

application

creating,

deleting,

or

changing

descriptive

information

about

a

domain

must

provide

domain

name

and

bind

information.

This

chapter

explores:

v

“Setting

up

default

domain

LDAP

URL

and

binding

information”

on

page

48

–

“Storing

LDAP

binding

information

in

a

profile”

on

page

48

-

“Adding

EIM

domain

and

bind

information

for

servers

or

administrative

users”

on

page

49

-

“Adding

a

system

default

using

the

IRR.EIM.DEFAULTS

profile”

on

page

49

-

“Adding

a

system

default

using

the

IRR.PROXY.DEFAULTS

profile”

on

page

50

v

“Optionally

setting

up

a

registry

name

for

your

local

RACF

registry”

on

page

50

–

“Steps

for

setting

up

lookups

that

do

not

need

a

registry

name”

on

page

50

v

“Ongoing

RACF

administration”

on

page

51

–

“Disabling

use

of

an

EIM

domain”

on

page

51

–

“Using

output

from

the

RACF

database

unload

utility

and

eimadmin

to

prime

your

EIM

domain

with

information”

on

page

51

Using

RACF

for

EIM

domain

access

The

RACF

administrator

can

use

RACF

commands

to

do

the

following:

v

Add

an

EIM

domain

name

and

bind

information

for

system-wide

use

v

Add

an

EIM

domain

name

and

bind

information

for

use

by

a

server

v

Add

an

EIM

domain

name

and

bind

information

for

use

by

an

administrative

user

v

Assign

a

name

to

the

local

RACF

registry

for

use

by

a

lookup

application

Tip:

Issuing

these

commands

is

optional.

However,

setting

up

your

system

this

way

can

eliminate

the

need

for

individual

applications

to

handle

EIM

domain

and

bind

information.

The

default

domain

and

bind

information

can

be

specified

in

one

of

three

places:

1.

The

user

ID

the

application

runs

under

has

the

name

of

an

LDAPBIND

class

profile

in

its

USER

profile

2.

The

IRR.EIM.DEFAULTS

profile

in

the

LDAPBIND

class

3.

The

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class

These

RACF

profiles

can

be

set

up

in

such

a

way

as

to

control

the

access

the

application

has

to

the

EIM

domain:

v

New

connections

with

an

EIM

domain

can

be

enabled

or

disabled

by

using

keywords

on

the

RDEFINE

or

RALTER

commands.

v

Bind

credentials

can

be

specific

to

the

server

or

administrator

who

uses

them.

The

EIM

APIs

try

to

retrieve

the

information

from

a

profile

if

the

application

does

not

explicitly

supply

the

information

to

the

EIM

APIs

using

parameters.

Applications

or

other

services

that

use

EIM

can

instruct

their

callers

to

define

a

profile

in

the

LDAPBIND

class

profile.

©

Copyright

IBM

Corp.

2004

47

|

|

|

|

|

|

|
|
|

|

|
|

|

|

|
|

|
|

|

|
|
|
|

Setting

up

default

domain

LDAP

URL

and

binding

information

Servers

that

use

an

EIM

domain

require

the

name

and

location

of

the

EIM

domain

and

the

appropriate

credentials

to

bind

to

the

LDAP

directory

service

containing

the

EIM

domain.

You

can

store

the

EIM

domain

name,

its

URL,

bind

distinguished

name,

and

bind

password

in

RACF

profiles.

(See

Table

18

for

the

ways

a

security

administrator

can

set

up

profiles.)

This

section

explores:

v

“Storing

LDAP

binding

information

in

a

profile”

–

“Adding

EIM

domain

and

bind

information

for

servers

or

administrative

users”

on

page

49

–

“Adding

a

system

default

using

the

IRR.EIM.DEFAULTS

profile”

on

page

49

–

“Adding

a

system

default

using

the

IRR.PROXY.DEFAULTS

profile”

on

page

50

Storing

LDAP

binding

information

in

a

profile

Before

you

begin:

v

Use

the

following

decision

table

to

determine

which

profile

to

use:

Table

18.

Decision

table

for

RACF

profiles

If

...

Then

...

The

EIM

domain

is

in

the

default

system

LDAP

directory

...

Set

up

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class.

(This

is

the

simplest

way

to

set

up

a

profile.)

A

server

needs

to

reference

an

EIM

domain

that

is

not

in

the

system

default

LDAP

directory

...

(This

could

be

because

the

IRR.PROXY.DEFAULTS

profile

has

different

bind

information

than

the

application

using

the

EIM

domain

requires.)

Set

up

a

profile

in

the

LDAPBIND

class.

Add

the

name

of

the

LDAPBIND

class

profile

to

the

user

profile

used

by

the

application.

v

Tip:

You

need

to

know

certain

information

to

use

as

parameters

in

RACF

commands.

Refer

to

the

z/OS

Security

Server

RACF

Command

Language

Reference

for

more

information.

Fill

in

the

missing

(Value

column)

information

in

the

following

table:

Table

19.

LDAP

information

needed

for

creating

RACF

profiles

Information

needed

Where

to

get

it

Value

bindDN

—The

distinguished

name

to

use

for

LDAP

binding.

Example:

cn=EIM

user,o=ibm,c=us

From

the

LDAP

administrator

bindPasswd

—

The

password

for

LDAP

binding.

Example:

secret

From

the

LDAP

administrator

Note

that

this

is

not

something

that

should

be

written

down.

domainDN

—

The

distinguished

name

of

the

EIM

domain.

From

the

EIM

administrator

48

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|

|

|

|

||

||

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

||

|||

|
|

|

|

||

|

|

|

||
|

|
|
||

Table

19.

LDAP

information

needed

for

creating

RACF

profiles

(continued)

Information

needed

Where

to

get

it

Value

ldapHost

—

The

LDAP

host.

This

consists

of

the:

v

String

LDAP://

or

LDAPS://

,

which

specifies

the

LDAP

protocol

to

use

when

binding

v

Host

name

or

IP

address

v

A

colon

(:)

followed

by

the

LDAP

port

number,

such

as

″:389″

(This

portion

of

the

host

name

is

optional

if

the

LDAP

server

is

using

the

default

port.)

Example:

LDAP://SOME.LDAP.HOST:389

From

the

LDAP

administrator

racfProfileName—

The

name

of

the

RACF

profile

that

stores

the

following

information

when

the

caller

does

not

provide

it:

v

ldapHost

v

bindDN

v

bindPasswd

v

domainDN

Example:

JOESDOMAIN

Note:

This

profile

can

be

a

profile

defined

in

the

LDAP

bind

class,

the

IRR.EIM.DEFAULTS

profile

in

the

LDAPBIND

class,

or

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILTY

class.

Defined

by

the

RACF

administrator

Adding

EIM

domain

and

bind

information

for

servers

or

administrative

users

To

create

a

profile

for

LDAP

binding

information:

1.

Perform

the

following

steps

if

you

are

creating

a

profile

in

the

LDAPBIND

class:

a.

To

define

the

domain

in

the

LDAPBIND

class,

enter:

RDEFINE

LDAPBIND

racfProfileName

EIM(DOMAINDN(domainDN))

PROXY(LDAPHOST(ldapHost)

BINDDN(bindDN)

BINDPW(bindPasswd))

Notes:

1.

OPTIONS(ENABLE)

is

the

default

value.

b.

To

update

the

user

profile:

ADDUSER

ASERVER

EIM(LDAPPROF(racfProfileName))

Adding

a

system

default

using

the

IRR.EIM.DEFAULTS

profile

1.

If

you

are

using

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class,

enter:

RDEFINE

LDAPBIND

IRR.EIM.DEFAULTS

PROXY(LDAPHOST(ldapHost)

BINDDN(bindDN)

BINDPW(bindPasswd))

EIM(DOMAINDN(domainDN))

Note:

OPTIONS(ENABLE)

is

the

default

value.

Chapter

5.

Using

RACF

commands

to

set

up

and

tailor

EIM

49

|

|||

|

|
|

|

|
|
|
|

|

|

||

|
|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|

|
|
|

|

|

|
|
|
|

|

|

|

|

|
|

|
|
|
|

|

Adding

a

system

default

using

the

IRR.PROXY.DEFAULTS

profile

If

no

LDAPBIND

class

profile

is

associated

with

the

caller’s

user

profile,

the

EIM

services

look

for

the

EIM

domain’s

LDAP

URL

and

binding

information

in

the

IRR.EIM.DEFAULTS

profile

in

the

LDAPBIND

class

followed

by

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class.

For

example,

the

following

command

sets

up

the

binding

information

in

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class:

RDEFINE

FACILITY

IRR.PROXY.DEFAULTS

PROXY(LDAPHOST(LDAP://SOME.BIG.HOST:389)

BINDDN(’cn=Joes

Admin,o=ibm,c=us’)

BINDPW(secret))

EIM(DOMAINDN(’ibm-eimDomainName=Joes

Domain,o=ibm,c=us’))

In

this

case,

the

domain’s

LDAP

URL

is:

LDAP://SOME.BIG.HOST:389/ibm-eimDomainName=Joes

Domain,o=ibm,c=us

Optionally

setting

up

a

registry

name

for

your

local

RACF

registry

Many

of

the

EIM

APIs

require

the

name

of

a

registry.

For

example,

if

you

are

adding

a

registry

to

an

EIM

domain,

you

should

know

the

name

of

the

new

registry.

However,

you

can

use

the

lookup

APIs

(such

as

eimGetTargetFromSource,

eimGetIdentifierFromSource,

and

eimGetAssociatedIdentifiers)

to

convert:

1.

A

user

ID

to

its

equivalent

RACF

user

ID

2.

A

local

RACF

user

ID

to

an

enterprise

identifier

For

such

applications,

you

can

eliminate

the

requirement

for

providing

the

RACF

registry

name

or

its

alias

on

the

local

system.

You

do

this

by

giving

a

name

to

the

local

RACF

registry.

Steps

for

setting

up

lookups

that

do

not

need

a

registry

name

Before

you

begin:

You

need

to

know

the

registry

name:

Table

20.

Local

registry

name

needed

for

creating

RACF

profiles

Information

needed

Where

to

get

it

Value

registryName

—

The

name

of

the

RACF

registry.

Example:

Registry

on

POK

System

EIM

administrator

Perform

the

following

steps

to

set

up

EIM

so

that

you

do

not

need

a

registry

name

on

every

lookup:

1.

To

define

the

local

registry,

enter

the

following

RACF

command

in

which

registryName

is

the

name

of

the

local

registry:

RDEFINE

FACILITY

IRR.PROXY.DEFAULTS

EIM(LOCALREGISTRY(registryName))

Note:

EIM

does

not

look

for

the

registry

name

in

an

LDAPBIND

class

profile.

2.

To

configure

your

options,

enter

the

following

RACF

command:

SETROPTS

EIMREGISTRY

Note:

You

could

also

IPL

to

get

the

same

effect

as

issuing

SETROPTS

EIMREGISTRY,

but

this

is

not

recommended.

50

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|

|

|

|
|
|

|

|

|
|

For

more

information

on

defining

a

registry

name,

refer

to

“EIM

registry

definition”

on

page

10.

Ongoing

RACF

administration

You

might

need

to

perform

the

following

tasks

as

part

of

ongoing

RACF

administration:

v

“Disabling

use

of

an

EIM

domain”

v

“Using

output

from

the

RACF

database

unload

utility

and

eimadmin

to

prime

your

EIM

domain

with

information”

Disabling

use

of

an

EIM

domain

You

might

need

to

temporarily

disable

use

of

a

RACF

profile

with

a

configured

EIM

domain

or

a

system-wide

default

EIM

domain.

You

might

want

to

do

this

if

the

EIM

information

in

a

domain

has

been

compromised

or

a

security

administrator

wants

to

stop

the

system

or

server

from

establishing

new

connections

with

the

EIM

domain.

You

can

use

RACF

commands

to

disable

a

domain

without

deleting

EIM

information

from

the

RACF

profiles.

When

an

EIM

domain

is

disabled

through

a

RACF

profile,

existing

connections

to

the

domain

complete

their

work.

However,

if

an

EIM

service

is

trying

to

establish

a

connection

with

such

a

domain,

the

EIM

service

does

not

continue

to

look

for

an

enabled

domain.

Steps

for

disabling

use

of

an

EIM

domain

Perform

the

following

steps

to

disable

a

server

from

using

the

configured

EIM

domain

(This

applies

only

to

a

server

that

has

an

ldapbind

class

profile

specified

for

its

user

ID):

1.

If

you

want

to

disable

a

server

(rather

than

a

system)

from

using

a

configured

EIM

domain,

enter

the

following

command:

RALTER

LDAPBIND

ldapbind_profile

EIM(OPTIONS(DISABLE))

Note:

No

change

is

required

to

the

user

profile.

Tip:

To

disable

a

system-wide

default

EIM

domain

(rather

than

a

server)

that

default

profiles

use,

enter

one

of

the

following

commands:

RALTER

FACILITY

IRR.PROXY.DEFAULTS

EIM(OPTIONS(DISABLE))

RALTER

LDAPBIND

IRR.EIM.DEFAULTS

EIM(OPTIONS(DISABLE))

Using

output

from

the

RACF

database

unload

utility

and

eimadmin

to

prime

your

EIM

domain

with

information

You

can

start

to

put

EIM

information

(identifiers,

RACF

user

IDs,

and

associations)

into

your

EIM

domain

by

using

output

from

DBUNLOAD

and

eimadmin.

For

large

installations,

priming

the

EIM

domain

with

identifiers

and

associations

can

involve

a

lot

of

work.

To

make

the

task

of

getting

started

with

EIM

easier,

the

eimadmin

utility

accepts

as

input

a

file

containing

a

list

of

identifiers

and

associations.

The

section

explores

the

steps

for

setting

up

an

EIM

domain

based

on

user

information

contained

in

a

RACF

database.

The

initial

assumptions

are

that

the

EIM

domain,

World

Wide

Domain,

has

been

created

and

a

SAF

system

registry,

SAF

user

IDs,

is

defined

in

the

domain.

The

ldap

host

name

for

the

domain

is

ldap://some.big.host.

The

EIM

administrator

uses

the

bind

distinguished

name

of

cn=EIM

Admin,o=My

Company,c=US

and

the

password

is

secret.

The

EIM

Chapter

5.

Using

RACF

commands

to

set

up

and

tailor

EIM

51

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|

|
|

|

|

|

|
|
|
|
|
|

administrator

bind

distinguished

name

has

been

given

EIM

administrator

authority

and

can

perform

all

of

the

steps

below.

A

user

with

other

types

of

EIM

authority

can

perform

a

subset

of

the

steps

below:

v

EIM

identifier

administrator

authority

only

works

with

identifiers

and

source

and

target

associations

v

EIM

registries

administrator

authority

only

works

with

target

associations

v

EIM

registry-specific

administrator

authority

for

the

SAF

registry

only

works

with

target

associations

in

the

SAF

registry

1.

Request

from

your

RACF

security

administrator

a

file

containing

a

copy

of

the

user

profiles

in

the

RACF

database.

The

RACF

security

administrator

can:

a.

Run

the

database

unload

utility

(IRRDBU00)

to

create

the

sequential

file

b.

Run

the

file

through

a

sort

program,

such

as

DFSORT

or

DFSORT

ICETOOL

to

extract

just

the

user

profiles

and

desired

fields.

The

User

Basic

Data

Record

(0200)

contains

the

user

ID

and

the

programmer

name.

In

this

example,

the

programmer

name

is

used

for

the

EIM

identifier.

The

DFSORT

ICETOOL

Report

format

has

a

1-4

character

name

(for

example,

EIM).

It

contains

the

ICETOOL

statements

that

control

report

format

and

record

summary

information,

such

as

SORT,

COPY,

DISPLAY,

and

OCCURS

statements.

An

example

of

a

report

format

which

can

be

used

to

extract

RACF

user

IDs

and

the

programmer

names

associated

with

the

user

IDs

is

below:

Example:

**

*

Name:

EIM

*

*

*

*

Find

all

user

IDs

in

the

RACF

database

and

their

name

*

**

COPY

FROM(DBUDATA)

TO(TEMP0001)

USING(RACF)

OCCURS

FROM(TEMP0001)

LIST(PRINT)

-

TITLE(’user

IDs

and

Names’)

-

ON(10,8,CH)

HEADER(’USER

ID’)

-

ON(79,20,CH)

HEADER(’Name’)

The

record

selection

criteria

is

as

follows:

v

The

name

of

the

member

containing

the

record

selection

criteria

is

the

report

member

name

followed

by

CNTL

(such

as

EIMCNTL).

v

Record

selection

is

performed

using

DFSORT

control

statements,

such

as

SORT

and

INCLUDE.

v

The

SORT

command

is

used

to

select

and

sort

records.

v

The

INCLUDE

command

is

used

to

specify

conditions

required

for

records

to

appear

in

the

report.

The

following

is

an

example

of

the

record

selection

criteria

that

could

be

used.

In

this

report,

we

are

including

only

User

Base

records

(record

type

0200)

which

have

the

RACF

user

ID

and

the

programmer

name.

The

selection

criteria

allows

records

for

the

special

RACF

user

IDs,

irrcerta,

irrmulti,

and

irrsitec,

to

remain

undisclosed

in

the

final

report.

SORT

FIELDS=(10,8,CH,A)

INCLUDE

COND=(5,4,CH,EQ,C’0200’,AND,

(10,8,CH,NE,C’irrcerta’,AND,

10,8,CH,NE,C’irrmulti’,AND,

10,8,CH,NE,C’irrsitec’))

10,7,CH,NE,C’IBMUSER’,AND,

OPTION

VLSHRT

Ongoing

RACF

administration

52

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|

|

|
|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

To

use

the

RACFICE

procedure

to

generate

the

report:

//jobname

JOB

Job

card...

//

SET

DBUDATA=USER01.TEST.IRRDBU00

//stepname

EXEC

RACFICE,REPORT=EIM

Result:

The

output

from

the

utility

looks

like

this:

User

ID

Name

ANN

ANN

J.

AUSTIN

CHRIS

CHRISTINE

IRVING

DENICE

DENICE

GARDNER

DIANA

DIANA

MACMILLIAN

ERIC

ERIC

D.

ADAMS

JAY

JASON

SWIFT

MAURA

MAURA

FISHER

OMAR

OMAR

ZACHARY

PEGGY

PEGGY

B.

WOLF

RANDY

RANDY

BRAUTIGAN

RICH

RICH

CLANCY

ROSS

ROSS

SIMPSON

SCOTT

SCOTT

SMYTHE

SHOZAB

SHOZAB

SYED

SHRUTI

SHRUTI

MODI

TRACY

TRACY

ROWLINGS

TERRY

TERRY

HAMMER

VIVIAN

VIVIAN

BRONTE

WILLY

WILLIAM

TROTSKY

Tips:

v

z/OS

Security

Server

RACF

Security

Administrator’s

Guide

contains

instructions

on

how

to

run

the

database

unload

utility

and

use

the

sort

programs.

2.

When

you

receive

the

report

from

the

security

administrator,

you

should

move

it

to

a

file

in

the

hierarchical

file

system

(HFS).

3.

Add

a

eimadmin

utility

″label

line″

to

the

file

containing

user

profiles.

You

can

use

any

one

of

the

editors

available

from

the

OMVS

shell

(such

as

OEDIT).

The

following

is

an

example

of

the

updated

file,

racfUsers.txt

with

a

label

line

added

and

the

DFSORT

column

headers

commented

out.

Tips

Any

user

IDs

that

should

not

go

into

the

EIM

domain,

such

as

user

IDs

belonging

to

servers,

can

also

be

commented

out.

#User

ID

Name

#-------------------

UN

;

IU

;

ANN

ANN

J.

AUSTIN

CHRIS

CHRISTINE

IRVING

DENICE

DENICE

GARDNER

DIANA

DIANA

MACMILLIAN

ERIC

ERIC

D.

ADAMS

JAY

JASON

SWIFT

MAURA

MAURA

FISHER

OMAR

OMAR

ZACHARY

PEGGY

PEGGY

B.

WOLF

RANDY

RANDY

BRAUTIGAN

RICH

RICH

CLANCY

ROSS

ROSS

SIMPSON

SCOTT

SCOTT

SMYTHE

SHOZAB

SHOZAB

SYED

SHRUTI

SHRUTI

MODI

TERRY

TERRY

HAMMER

TRACY

TRACY

ROWLINGS

VIVIAN

VIVIAN

BRONTE

WILLY

WILLIAM

TROTSKY

Ongoing

RACF

administration

Chapter

5.

Using

RACF

commands

to

set

up

and

tailor

EIM

53

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4.

Add

identifiers

and

list

the

results

using

the

eimadmin

shell

command:

eimadmin

-aI

-d

"ibm-eimDomainName=World

Wide

Domain,o=My

Company,c=US"

-h

ldap://some.big.host

-b

"cn=EIM

Admin,o=My

Company,c=US"

-w

secret

<racfUsers.txt

5.

To

list

the

identifiers

added

above,

issue:

eimadmin

-lI

-d

"ibm-eimDomainName=World

Wide

Domain,o=My

Company,c=US"

-h

ldap://some.big.host

-b

"cn=EIM

Admin,o=My

Company,c=US"

-w

secret

<racfUsers.txt

6.

Create

source

and

target

associations

between

the

identifiers

and

the

user

IDs

in

RACF.

Because

the

file

racfUsers.txt

contains

a

label

line

that

identifies

user

IDs

as

well

as

unique

identifier

names,

it

can

be

used

to

create

associations:

eimadmin

-aA

-t

source

-t

target

-r"SAF

user

IDs"

-d

"ibm-eimDomainName=World

Wide

Domain,o=My

Company,c=US"

-h

ldap://some.big.host

-b

"cn=EIM

Admin,o=My

Company,c=US"

-w

secret

<racfUsers.txt

7.

To

list

the

associations

added

above:

eimadmin

-lA

-d

"ibm-eimDomainName=World

Wide

Domain,o=My

Company,c=US"

-h

ldap://some.big.host

-b

"cn=EIM

Admin,o=My

Company,c=US"

-w

secret

<racfUsers.txt

8.

The

following

eimadmin

commands

can

be

used

to

give

EIM

Mapping

Operations

authority

to

each

of

the

users

(identified

in

the

file

racfUsersDNs.txt):

eimadmin

-aC

-c

MAPPING

-d

"ibm-eimDomainName=World

Wide

Domain,o=My

Company,c=US"

-f

DN

-h

ldap://some.big.host

-b

"cn=EIM

Admin,o=My

Company,c=US"

-w

secret

<racfUsersDNs.txt

To

list

the

accesses

that

have

been

granted,

issue:

eimadmin

-lC

-c

MAPPING

-d

"ibm-eimDomainName=World

Wide

Domain,o=My

Company,c=US"

-h

ldap://some.big.host

-b

"cn=EIM

Admin,o=My

Company,c=US"

-w

secret

<racfUsersDNs.txt

Tip:

At

a

minimum,

a

user

who

is

looking

for

a

mapping

in

the

EIM

domain

needs

to

have

EIM

mapping

operations

authority.

In

most

cases,

the

application

has

one

set

of

credentials

for

connect

with

an

EIM

domain,

and

those

credentials

are

shared

by

all

users.

However,

if

individual

access

is

needed,

then

a

bind

distinguished

name

needs

to

be

defined

for

each

of

the

users

and

given

EIM

mapping

operations

authority.

Ongoing

RACF

administration

54

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

Suppose

the

file

racfUsersDNs.txt

contains

this

list

of

bind

distinguished

names

that

were

defined

to

the

LDAP

server

containing

the

EIM

domain

controller

and

an

eimadmin

label

line:

CU

;

cn=Ann

J.

Austin,o=My

Company,c=US

cn=Chrisine

Irving,o=My

Company,c=US

cn=Denice

Gardener,o=My

Company,c=US

cn=Diana

MacMillian,o=My

Company,c=US

cn=Eric

D.

Adams,o=My

Company,c=US

cn=Jason

Swift,o=My

Company,c=US

cn=Maura

Fisher,o=My

Company,c=US

cn=Omar

Zachary,o=My

Company,c=US

cn=Peggy

B.

Wolf,o=My

Company,c=US

cn=Randy

Brautigan,o=My

Company,c=US

cn=Rich

Clancy,o=My

Company,c=US

cn=Ross

Simpson,o=My

Company,c=US

cn=Scott

Smythe,o=My

Company,c=US

cn=Shozab

Syed,o=My

Company,c=US

cn=Shruti

Modi,o=My

Company,c=US

cn=Terry

Hammer,o=My

Company,c=US

cn=Tracy

Rowlings,o=My

Company,c=US

cn=Vivian

Bronte,o=My

Company,c=US

cn=William

Trotsky,o=My

Company,c=US

Ongoing

RACF

administration

Chapter

5.

Using

RACF

commands

to

set

up

and

tailor

EIM

55

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Ongoing

RACF

administration

56

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

6.

Developing

applications

The

z/OS

UNIX

programmer

codes

customer

EIM

lookups

and

administrative

applications,

integrating

calls

to

the

EIM

APIs

within

these

applications.

The

EIM

APIs

are

implemented

as

″C″

programming

interfaces.

This

chapter

explores:

v

“Writing

EIM

applications”

–

“Default

registry

names”

–

“Defining

private

user

registry

types

in

EIM”

-

“Define

a

private

user

registry

type

in

EIM”

v

“Building

an

EIM

application”

on

page

59

–

“Compile

considerations”

on

page

59

–

“Link-edit

considerations”

on

page

60

v

“Preparing

to

run

an

EIM

application”

on

page

60

v

“APIs

for

retrieving

the

LDAP

URL

and

binding

information”

on

page

60

v

“Determining

why

a

mapping

is

not

returned”

on

page

61

Writing

EIM

applications

Default

registry

names

Many

of

the

EIM

APIs

require

the

specification

of

the

name

of

a

registry.

For

example,

if

you

are

adding

a

registry

to

an

EIM

domain,

you

should

know

the

name

of

the

new

registry

being

used.

However,

you

might

use

the

lookup

APIs

(such

as

eimGetTargetFromSource,

eimGetTargetFromIdentifier,

and

eimGetAssociatedIdentifiers)

to

convert:

v

A

user

ID

to

its

equivalent

RACF

user

ID

v

A

local

RACF

user

ID

to

an

enterprise

identifier

Tip:

For

such

applications,

you

can

eliminate

the

requirement

for

providing

the

RACF

registry

name

or

its

alias

on

the

local

system.

This

is

done

by

storing

a

name

for

the

local

RACF

registry

in

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class.

Defining

private

user

registry

types

in

EIM

Define

a

private

user

registry

type

in

EIM

To

define

a

user

registry

type

that

EIM

is

not

predefined

to

recognize,

you

must

specify

the

registry

type

in

the

form

of

ObjectIdentifier-normalization,

where

ObjectIdentifier

is

a

dotted

decimal

object

identifier

(OID),

such

as

1.2.3.4.5.6.7,

and

normalization

is

either

the

value

caseExact

or

the

value

caseIgnore.

If

you

need

a

private

OID

for

use

only

within

your

enterprise,

you

can

pick

any

arbitrary

number

not

already

in

use.

However,

private

OIDs

that

you

want

to

use

outside

your

enterprise

must

be

obtained

from

legitimate

OID

registration

authorities.

Doing

so

ensures

that

you

create

and

use

unique

OIDs

which

helps

you

avoid

potential

OID

conflicts

with

OIDs

created

by

other

organizations.

There

are

two

ways

of

obtaining

OIDs:

©

Copyright

IBM

Corp.

2004

57

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|

|

|

|
|
|
|

|
|
|
|
|

1.

Registering

your

OIDs

with

an

authority

is

a

good

choice,

for

example,

when

you

need

a

small

number

of

fixed

OIDs

to

represent

information.

For

example,

these

OIDs

might

represent

certificate

policies

for

users

in

your

enterprise.

2.

Obtaining

an

arc

assignment,

which

is

a

dotted

decimal

object

identifier

range

assignment,

is

a

good

choice

if

you

need

a

large

number

of

OIDs,

or

if

your

OID

assignments

are

subject

to

change.

The

arc

assignment

consists

of

the

beginning

dotted

decimal

numbers

from

which

you

must

base

your

ObjectIdentifier.

For

example,

the

arc

assignment

could

be

1.2.3.4.5..

You

could

then

create

OIDs

by

adding

to

this

basic

arc.

For

example,

you

could

create

OIDs

in

the

form

1.2.3.4.5.x.x.x).

Tip:

You

can

learn

more

about

registering

your

OIDs

with

a

registration

authority

by

reviewing

these

Internet

resources:

v

ANSI

is

the

registration

authority

for

the

United

States

for

organization

names

under

the

global

registration

process

established

by

ISO

and

ITU.

A

fact

sheet

with

links

to

an

application

form

is

located

at

the

ANSI

Web

site:

http://web.ansi.org/public/services/reg_org.html

Note:

The

ANSI

OID

arc

for

organizations

is

2.16.840.1.

ANSI

charges

a

fee

for

OID

arc

assignments.

It

takes

approximately

two

weeks

to

receive

the

assigned

OID

arc

from

ANSI.

ANSI

will

assign

a

number

(NEWNUM),

creating

a

new

OID

arc:

2.16.840.1.NEWNUM.

v

In

most

countries

or

regions,

the

national

standards

association

maintains

an

OID

registry.

As

with

the

ANSI

arc,

these

are

generally

arcs

assigned

under

the

OID

2.16.

It

might

take

some

investigation

to

find

the

OID

authority

for

a

particular

country

or

region.

The

addresses

for

ISO

national

member

bodies

can

be

found

at:

http://www.iso.ch/addresse/membodies.html

The

information

includes

a

postal

address

and

electronic

mail,

and

in

many

cases

a

Web

site

is

specified

as

well.

v

Another

possible

starting

point

is

the

International

Register

of

ISO

DCC

Network

Service

Access

Point

(NSAP)

schemes.

The

registry

for

schemes

can

be

obtained

at:

http://www.fei.org.uk/fei/dcc-nsap.htm

This

Web

site

currently

lists

contact

information

for

thirteen

naming

authorities,

some

of

which

also

assign

OIDs.

v

The

Internet

Assigned

Numbers

Authority

(IANA)

assigns

private

enterprise

numbers,

which

are

OIDs,

in

the

arc

1.3.6.1.4.1.

IANA

has

assigned

arcs

to

over

7,500

companies

to

date.

The

application

page

is

located

at:

http://www.iana.org/forms.html

It

can

be

found

under

″Private

Enterprise

Numbers″.

The

IANA

OID

is

free

and

is

usually

received

in

about

one

week.

IANA

assigns

a

number

(NEWNUM),

so

the

new

OID

arc

will

be

1.3.6.1.4.1.NEWNUM.

v

The

U.S.

Federal

Government

maintains

the

Computer

Security

Objects

Registry

(CSOR).

The

CSOR

is

the

naming

authority

for

the

arc

2.16.840.1.101.3,

and

is

currently

registering

objects

for

security

labels,

cryptographic

algorithms,

and

certificate

policies.

The

certificate

policy

OIDs

are

defined

in

the

arc

2.16.840.1.101.3.2.1.

The

CSOR

provides

policy

OIDs

to

agencies

of

the

United

States

Federal

Government.

For

more

information

about

the

CSOR,

refer

to:

http://csrc.nist.gov/csor/

Developing

applications

58

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

|

http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/security/
http://www.ibm.com/servers/eserver/zseries/zos/security/

For

more

information

on

OIDs

for

certificate

policies,

see

http://csrc.nist.gov/csor/pkireg.htm.

Building

an

EIM

application

Any

user

of

an

EIM

application

(including

eimadmin)

needs

a

z/OS

UNIX

System

Services

UID

and

GID

assigned

to

them.

See

z/OS

UNIX

System

Services

Planning

for

details

on

how

to

do

this.

This

section

explores:

v

“Compile

considerations”

v

“Link-edit

considerations”

on

page

60

Note:

The

EIM

programming

interface

is

provided

in

a

set

of

C/C++

functions

in

the

EIM

DLL.

The

DLL

is

loaded

at

program

run

time

so

that

calls

to

the

functions

in

the

interface

can

be

made.

In

order

to

compile

and

link-edit

a

program

that

uses

the

EIM

API,

use

the

following

guidelines.

Compile

considerations

Put

the

following

include

statement

in

all

C

or

C++

source

files

that

make

calls

to

the

EIM

programming

interface

or

use

EIM

data

structures.

#include

<eim.h>

Note:

If

defaults

were

used

during

EIM

installation,

the

eim.h

file

is

located

in

the

/usr/lpp/eim/include

directory.

The

eim.h

file

has

been

symbolically

linked

in

the

/usr/include

directory.

If

EIM

was

not

installed

in

the

default

location,

you

might

need

to

specify

the

directory

where

the

compiler

is

to

find

the

eim.h

file

with

the

-I

parameter.

Tip:

Specify

-D_EIM_EXT

on

the

compile

of

the

source

files

that

include

eim.h.

This

ensures

full

support

for

the

errno

values

defined

for

EIM

and

that

they

are

proper

by

defined

for

your

application’s

use.

Additionally,

the

Language

Environment

library

level

must

be

at

z/OS

release

4

or

above.

To

set

the

Language

Envirnoment

library

level

to

the

z/OS

Version

1

Release

4

level,

specify

target(0x41040000).

(To

add

this

to

the

C/C++

command,

specify

-Wc,target\(0x41040000\)

).

When

compiling,

be

sure

to

specify

-Wc,dll

for

C++

files,

or

-Wc,dll,sscom

for

C

files

that

make

calls

to

the

EIM

APIs

or

that

include

the

eim.h

file.

Tip:

Ensure

your

application

has

POSIX(ON)

specified

so

it

can

use

the

EIM

APIs.

The

values

returned

by

the

EIM

APIs

are

standard

POSIX

errnos

with

five

additions.

These

errnos,

including

the

additions,

can

be

used

as

input

to

the

strerror:

1.

EBADDATA

=

Data

is

not

valid

2.

EUNKNOWN

=

Unknown

system

state

3.

ENOTSUP

=

Operation

not

supported

4.

EBADNAME

=

The

object

name

specified

is

not

correct

5.

ENOTSAFE

=

The

function

is

not

allowed

Refer

to

“eimErr2String”

on

page

166

for

more

information.

Developing

applications

Chapter

6.

Developing

applications

59

|
|

|
|
|
|

|

|

Link-edit

considerations

Tip:

When

link-editing,

be

sure

to

specify

the

EIM

″exports″

file

in

the

set

of

files

to

be

link-edited

with

the

program.

The

EIM

export

file

(eim.x)

is

located

in

the

library

directory

of

the

EIM

install

directory,

which

is

/usr/lpp/eim/lib

by

default.

For

convenience,

a

symbolic

link

to

this

file

has

been

created

in

the

/usr/lib

directory.

If

the

default

directory

was

used

during

EIM

installation,

the

export

file

could

be

specified

as

/usr/lib/eim.x

or

/usr/lpp/eim/lib/eim.x.

Tip:

When

linking

an

EIM

application,

be

sure

to

specify

-Wl,AC=1

for

programs

that

make

calls

to

the

EIM

APIs.

Preparing

to

run

an

EIM

application

Rule:

z/OS

requires

programs

that

use

the

EIM

APIs

to

be

APF-authorized,

which

means

that

you

must

set

the

APF-authorization

extended

attribute

for

each

EIM

application

program.

This

attribute

is

set

by

using

the

extattr

command.

For

example

extattr

+a

eimprog

would

set

the

APF-authorization

bit

for

the

program

eimprog

in

the

current

directory.

For

more

information

on

the

extattr

command,

refer

to

z/OS

UNIX

System

Services

Command

Reference

or

z/OS

UNIX

System

Services

Planning.

Tip:

When

running

an

EIM

application,

be

sure

that

the

EIM

DLL

is

accessible

by

ensuring

the

LIBPATH

environment

variable

includes

/usr/lib.

Be

sure

that

the

directory

your

programs

are

located

in

are

in

the

PATH

environment

variable.

Since

the

EIM

message

catalogs

are

symbolically

linked

in

the

/usr/lib/nls/msg

directories,

it

should

not

be

necessary

to

update

NLSPATH.

APIs

for

retrieving

the

LDAP

URL

and

binding

information

EIM

APIs,

eimCreateHandle,

eimConnect,

and

eimConnectToMaster,

use

SAF

APIs

to

retrieve

the

domain’s

LDAP

URL

and

binding

information

from

RACF

profiles

when

the

caller

does

not

provide

them.

The

order

of

search

for

the

domain

and

bind

information

is:

1.

As

input

parameters

on

the

call

to

the

EIM

API

2.

In

profiles

as

follows:

a.

LDAPBIND

profile

named

in

the

EIM

segment

of

the

caller’s

USER

profile

b.

IRR.EIM.DEFAULTS

profile

in

the

LDAPBIND

class

c.

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class

It

is

reasonable

for

domain

APIs

to

have

access

to

the

domain’s

LDAP

URL

and

binding

information

because

only:

v

The

LDAP

administrator

can

create

a

domain

v

A

limited

number

of

users

have

the

authority

to

change,

delete

or

list

domain

information

Tip:

Applications,

servers,

or

operating

systems

can

use

other

APIs

(such

as

registry,

identifier,

association,

access

control,

and

lookup

APIs)

that

should

obtain

the

domain’s

LDAP

URL

and

binding

information

from

a

source

the

security

administrator

controls.

Developing

applications

60

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|
|
|
|
|

|

|

|

|

Determining

why

a

mapping

is

not

returned

If

your

application

is

up

and

running,

it

should

be

able

to

connect

to

the

EIM

domain

controller.

However,

if

it

does

not

return

expected

results

for

the

EIM

API,

the

following

could

be

happening:

v

The

EIM

information

you

are

trying

to

retrieve

is

not

defined

in

the

EIM

domain

v

The

end

user

does

not

have

the

correct

level

of

authority

to

the

information

Tip:

Some

things

the

EIM

administrator

can

consider

for

investigation:

1.

List

the

EIM

information

to

verify

that

the

EIM

information

you

are

looking

for

is

defined.

2.

Verify

that

the

user

you

are

connecting

with

has

the

required

level

of

authority

for

the

API

you

are

using.

Developing

applications

Chapter

6.

Developing

applications

61

|

Developing

applications

62

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

7.

Messages

Enterprise

Identity

Mapping

(EIM)

on

z/OS

uses

message

catalogs

to

store

error

strings

and

messages.

The

error

strings

explain

why

a

particular

return

code

(or

errno)

is

returned

by

an

EIM

API.

The

messages

are

issued

by

the

eimadmin

utility.

Message

catalogs

makes

it

easier

for

software

to

provide

versions

of

error

strings

and

messages

in

languages

other

than

English.

All

of

the

messages

in

this

section

with

the

exception

of

the

ITY4xxx

messages

are

error

strings.

The

error

strings

are

in

the

format

that

is

returned

by

a

catgets()

function.

An

error

string

or

message

has

the

following

format:

ITYnnnn

text

nnnn

The

message

ID

number

in

the

message

catalog.

The

text

of

an

error

string

might

contain

an

XPG4

conversion

specification

for

a

substitution

value.

A

conversion

specification

has

the

following

format:

%n$x

%

The

start

of

the

conversion

specification

n

The

nth

argument

after

the

format-string

of

an

fprintf,

sprintf,

or

printf

function

$

A

delimiter

x

The

kind

of

variable

(for

example,

s=string)

More

details

on

XPG4

conversion

specifications

and

their

use

can

be

found

in

z/OS

C/C++

Run-Time

Library

Reference.

The

error

message

IDs

in

the

EIM

message

catalog

are

divided

into

ranges

based

by

function:

ITY0xxx

Error

strings

that

an

EIM

API

returns

(across

iSeries,

zSeries,

pSeries,

and

xSeries

platforms)

ITY4xxx

Messages

that

the

eimadmin

utility

issues

ITY6xxx

z/OS-specific

error

strings

The

application

programer

has

two

options

for

handling

error

strings

in

an

EIM

application:

v

Retrieve

the

error

string

from

the

message

catalog,

format

the

error

string

into

a

message,

and

print

the

message

to

the

screen

or

error

log.

v

Use

the

eimErr2String

API,

which

retrieves

the

error

string

and

formats

it

into

a

message

that

can

be

printed

using

one

of

the

C

or

C++

print

functions.

An

application

that

works

directly

with

the

message

catalog

needs

to

do

the

following:

1.

Open

the

message

catalog

using

the

catopen

function.

2.

Read

the

error

string

from

the

message

catalog

using

the

catgets

function.

©

Copyright

IBM

Corp.

2004

63

3.

Format

the

message

and

fill

in

any

substitution

values

EIM

returns

by

using

one

of

the

fprintf

family

of

functions—

fprintf(),

sprintf(),

printf().

4.

Close

the

message

catalog

using

the

catclose

function

These

functions

require

the

message

catalog

set

number

and

message

ID,

which

are

contained

in

the

EimRC

return

code

parameter

on

the

EIM

APIs.

See

the

z/OS

C/C++

Run-Time

Library

Reference

for

details

on

how

to

use

these

functions.

The

eimErr2String

API

simplifies

the

task

of

creating

the

message

by

performing

this

processing

for

you.

ITY0001

Insufficient

access

to

EIM

data.

Symbolic

Identifier

(value):

EIMERR_ACCESS

(1)

Explanation:

The

bind

distinguished

name

did

not

have

sufficient

authority

to

access

the

desired

EIM

data.

LDAP

returned

LDAP_INSUFFICIENT_ACCESS

to

the

requested

operation.

Programmer

Response:

Verify

the

bind

distinguished

name

is

a

member

of

the

EIM

access

control

group

required

for

the

API.

The

bind

distinguished

name

can

be

obtained

from

one

of

four

places:

1.

It

can

be

specified

on

a

call

to

the

eimConnect

or

eimConnectToMaster

API.

2.

If

it

is

not

specified

on

the

API,

it

can

be

retrieved

from

the

LDAPBIND

class

profile

that

is

associated

with

the

caller’s

user

ID.

3.

If

it

is

neither

specified

on

the

API

nor

retrieved

from

the

LDABIND

class

profile

associated

with

the

caller,

it

can

be

retrieved

from

the

IRR.EIM.DEFAULTS

profile

in

the

LDAPBIND

class

4.

If

it

is

in

none

of

the

above

places

it

can

be

in

the

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class.

System

Action:

The

called

function

fails.

ITY0002

Access

type

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_ACCESS_TYPE_INVAL

(2)

Explanation:

The

value

specified

for

the

access

type

parameter

is

not

a

valid

access

type.

Programmer

Response:

Correct

the

errror

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0003

Access

user

type

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_ACCESS_USERTYPE_INVAL

(3)

Explanation:

The

value

specified

for

the

user

access

type

parameter

is

either

not

a

valid

access

type

or

not

supported

on

this

platform.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

and

verify

the

user

access

type

is

supported.

If

the

user

access

type

is

not

supported

or

an

incorrect

value

was

specified

for

the

access

type,

correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0004

Association

type

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_ASSOC_TYPE_INVAL

(4)

Explanation:

The

value

specified

for

the

association

type

parameter

is

not

a

valid

type

of

association.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0005

Attribute

name

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_ATTR_INVAL

(5)

Explanation:

The

value

specified

for

the

attribute

parameter

is

either

not

a

valid

attribute

or

not

supported

on

this

platform.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

and

verify

the

attribute

is

supported.

If

the

attribute

is

not

supported

or

an

incorrect

value

was

specified

for

the

attribute,

correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0006

Attribute

not

supported.

Symbolic

Identifier

(value):

EIMERR_ATTR_NOTSUPP

(6)

Explanation:

The

value

specified

for

the

handle

attribute

is

either

not

a

valid

attribute

or

not

supported

on

this

platform.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

and

verify

the

attribute

is

supported.

If

the

attribute

is

not

supported

or

an

incorrect

value

was

specified

for

the

attribute,

correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

64

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

ITY0007

Insufficient

authority

for

the

operation.

Symbolic

Identifier

(value):

EIMERR_AUTH_ERR

(7)

Explanation:

Not

returned

on

EIM

for

z/OS.

Programmer

Response:

None.

System

Action:

None.

ITY0008

CCSID

is

outside

of

valid

range

or

CCSID

is

not

supported.

Symbolic

Identifier

(value):

EIMERR_CCSID_INVAL

(8)

Explanation:

Not

returned

on

EIM

for

z/OS.

Programmer

Response:

None.

System

Action:

None.

ITY0009

This

change

type

is

not

valid

with

the

requested

attribute.

Symbolic

Identifier

(value):

EIMERR_CHGTYPE_INVAL

(9)

Explanation:

The

value

specified

for

the

attribute

change

type

is

not

a

valid

change

type

value.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0010

Length

of

EimConfig

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_CONFIG_SIZE

(10)

Explanation:

Not

returned

on

EIM

for

z/OS.

Programmer

Response:

None.

System

Action:

None.

ITY0011

Connection

already

exists.

Symbolic

Identifier

(value):

EIMERR_CONN

(11)

Explanation:

An

attempt

was

made

to

use

an

EIM

handle

that

already

has

a

connection

established

with

an

EIM

domain.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

invoked

function

fails.

ITY0012

Connection

type

is

not

supported.

Symbolic

Identifier

(value):

EIMERR_CONN_NOTSUPP

(12)

Explanation:

The

value

specified

for

the

connection

type

is

either

not

a

valid

connection

type

or

not

supported

on

this

platform.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

and

verify

the

connection

type

is

supported.

If

the

connection

type

is

not

supported

or

an

incorrect

value

was

specified

for

the

attribute,

correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0013

Error

occurred

when

converting

data

between

code

pages.

Symbolic

Identifier

(value):

EIMERR_DATA_CONVERSION

(13)

Explanation:

Not

returned

on

EIM

for

z/OS.

Programmer

Response:

None.

System

Action:

None.

ITY0014

EIM

domain

entry

already

exists

in

EIM.

Symbolic

Identifier

(value):

EIMERR_DOMAIN_EXISTS

(14)

Explanation:

The

EIM

domain

distinguished

name

specified

in

the

ldapURL

parameter

is

defined

on

the

LDAP

host.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0015

Cannot

delete

a

domain

when

it

has

registries

or

identifiers.

Symbolic

Identifier

(value):

EIMERR_DOMAIN_NOTEMPTY

(15)

Explanation:

The

specified

EIM

domain

could

not

be

deleted

because

it

contains

identifiers,

registry

users,

or

associations.

Programmer

Response:

Delete

the

identifiers,

registry

users,

or

associations

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0016

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

Symbolic

Identifier

(value):

EIMERR_EIMLIST_SIZE

(16)

Explanation:

The

value

specified

for

the

length

of

the

EimList

structure

parameter

is

fewer

than

20

bytes.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

Chapter

7.

Messages

65

ITY0017

EimHandle

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_HANDLE_INVAL

(17)

Explanation:

The

EIM

handle

does

not

contain

the

expected

data

and

cannot

be

used

with

any

EIM

service.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0018

NameInUseAction

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_IDACTION_INVAL

(18)

Explanation:

The

value

specified

for

the

name

in

use

parameter

is

not

valid.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0019

EIM

identifier

already

exists

by

this

name.

Symbolic

Identifier

(value):

EIMERR_IDENTIFIER_EXISTS

(19)

Explanation:

The

identifier

could

not

be

added

because

another

identifier

exists

in

the

domain

with

the

same

unique

name.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0020

More

than

one

EIM

identifier

was

found

that

matches

the

requested

identifier

name.

Symbolic

Identifier

(value):

EIMERR_IDNAME_AMBIGUOUS

(20)

Explanation:

The

eimListIdentifier

or

eimRemoveIdentifier

service

found

more

than

one

entry

that

matches

the

specified

identifier

name.

This

can

occur

when

the

non-unique

name

is

used

for

the

name

parameter.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0021

A

restricted

character

was

used

in

the

object

name.

Symbolic

Identifier

(value):

EIMERR_CHAR_INVAL

(21)

Explanation:

The

EIM

API

detected

one

of

the

following

characters

in

the

name:

,

=

+

>

<

#

;

\

*

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY00022

The

protect

parameter

in

EimSimpleConnectInfo

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_PROTECT_INVAL

(22)

Explanation:

The

value

specified

for

the

password

protection

type

is

either

not

a

valid

protection

type

or

not

supported

on

this

platform.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

and

verify

the

password

protection

type

is

supported.

If

the

password

protection

type

is

not

supported

or

an

incorrect

value

was

specified,

correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0023

Unexpected

LDAP

error.

%1$s

Symbolic

Identifier

(value):

EIMERR_LDAP_ERR

(23)

Explanation:

An

unexpected

LDAP

error

occurred.

The

eimrc

parameter

contains

the

name

of

the

LDAP

service

that

returned

an

error

and

additional

diagnostic

information

from

the

LDAP

client

and

from

the

LDAP

server,

if

available.

The

substitution

text

is:

ldap

client

API

name

-

ldap

error

code

:

additional

error

information

Programmer

Response:

Check

the

LDAP

client

publication

for

information

on

the

failing

LDAP

service

and

the

returned

error

values.

Also

check

the

EIM

API

documentation

for

information

on

the

service

being

performed.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0024

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

Symbolic

Identifier

(value):

EIMERR_NODOMAIN

(24)

Explanation:

The

domain

name

in

the

ldapURL

parameter

does

not

exist

or

the

bind

distinguished

name

does

not

have

authority

to

access

the

EIM

data.

Programmer

Response:

Verify

the

bind

distinguished

name

is

a

member

of

an

EIM

access

control

group

that

the

EIM

API

requires.

Verify

the

domain

exists

in

the

LDAP

directory

service.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

66

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

ITY0025

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

Symbolic

Identifier

(value):

EIMERR_NOIDENTIFIER

(25)

Explanation:

The

EIM

identifier

does

not

exist

or

the

bind

distinguished

name

used

to

establish

a

connection

with

the

EIM

domain

does

not

have

authority

to

access

the

EIM

data.

Programmer

Response:

Verify

the

bind

distinguished

name

is

a

member

of

an

EIM

access

control

group

that

the

EIM

API

requires.

Verify

the

identifier

exists

in

the

LDAP

directory

service.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0026

Unable

to

allocate

internal

system

object.

Symbolic

Identifier

(value):

EIMERR_NOLOCK

(26)

Explanation:

Not

returned

by

EIM

on

z/OS

Programmer

Response:

None.

System

Action:

None.

ITY0027

No

memory

available.

Unable

to

allocate

required

space.

Symbolic

Identifier

(value):

EIMERR_NOMEM

(27)

Explanation:

The

EIM

API

was

unable

to

memory

allocate

(malloc)

storage.

Programmer

Response:

Isolate

the

reason

why

the

program

ran

out

of

storage,

correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0028

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

Symbolic

Identifier

(value):

EIMERR_NOREG

(28)

Explanation:

The

EIM

API

could

not

find

the

specified

registry

in

the

domain

or

the

bind

distinguished

name

did

not

have

access

to

the

registry.

Programmer

Response:

Verify

the

correct

registry

name

and

domain

is

specified.

Verify

the

bind

distinguished

name

is

a

member

of

an

access

control

group

that

the

EIM

API

requires.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0029

Registry

user

not

found

or

insufficient

access

to

EIM

data.

Symbolic

Identifier

(value):

EIMERR_NOREGUSER

(29)

Explanation:

The

EIM

API

could

not

find

the

specified

registry

user

in

the

domain

or

the

bind

distinguished

name

did

not

have

access

to

the

registry.

Programmer

Response:

Verify

the

correct

registry

user,

registry

name

and

domain

is

specified.

Verify

the

bind

distinguished

name

is

a

member

of

an

access

control

group

that

an

EIM

API

requires.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0030

EIM

environment

is

not

configured.

Symbolic

Identifier

(value):

EIMERR_NOTCONFIG

(30)

Explanation:

The

EIM

API

could

not

find

the

ldapURL

or

the

registry

name

in

a

RACF

profile.

Programmer

Response:

If

the

EIM

API

requires

an

ldapURL

and

the

application

is

using

EIM

configuration

information

associated

with

the

caller’s

user

profile,

verify

that

the

EIM

segment

for

the

user

profile

has

the

name

of

a

profile

in

the

LDAPBIND

class.

Verify

the

LDAPBIND

class

has

a

host

name

in

the

LDAPHOST

field

of

the

PROXY

segment

and

a

domain

distinguished

name

(DN)

in

the

DOMAINDN

field

of

the

EIM

segment.

If

the

application

is

using

the

system

defaults

from

the

IRR.EIM.DEFAULTS

LDAPBIND

clss

profile

or

the

IRR.PROXY.DEFAULTS

FACILITY

class

profile,

verify

the

LDAP

host

name

and

EIM

domain

distinguished

name

are

defined.

If

the

EIM

API

requires

the

system

default

registry

name,

then

verify

the

IRR.PROXY.DEFAULTS

FACILITY

class

profile

contains

a

registry

name

in

the

LOCALREG

field

of

the

EIM

segment

and

that

a

SETROPTS

EIMREGISTRY

has

been

issued

to

bring

the

registry

name

into

storage.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0031

Not

connected

to

LDAP.

Symbolic

Identifier

(value):

EIMERR_NOT_CONN

(31)

Explanation:

The

EIM

API

requires

an

EIM

handle

that

is

connected

to

an

EIM

domain.

Programmer

Response:

Issue

an

eimConnect

or

eimConnect

service

for

the

EIM

handle

and

try

the

service

again.

System

Action:

The

called

function

fails.

Chapter

7.

Messages

67

ITY0032

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_NOT_SECURE(32)

Explanation:

The

URL

for

the

EIM

domain

controller

does

not

begin

with

ldaps.

Programmer

Response:

Verify

the

URL

is

correct

and

that

the

correct

option

is

specified

on

the

EIM

API,

then

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0033

System

registry

not

found.

Symbolic

Identifier

(value):

EIMERR_NO_SYSREG

(33)

Explanation:

The

eimAddApplicationRegistry

API

requires

the

name

of

a

system

registry.

The

registry

does

not

exist

in

the

EIM

domain

or

the

bind

distinguished

name

(DN)

is

not

a

member

of

one

of

the

access

control

groups

that

the

eimAddApplicationRegistry

API

requires.

Programmer

Response:

Verify

the

correct

system

registry

name

is

provided.

Verify

the

bind

disiinguished

name

is

a

member

of

one

of

the

access

control

groups

that

the

eimAddApplication

registry

requires.

Correct

the

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0034

Missing

required

parameter.

Symbolic

Identifier

(value):

EIMERR_PARM_REQ

(34)

Explanation:

A

required

parameter

for

the

EIM

API

is

missing.

Programmer

Response:

Check

the

EIM

API

documentation,

identify

the

missing

parameter,

correct

the

problem,

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0035

Pointer

parameter

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_PTR_INVAL

(35)

Explanation:

Not

returned

by

EIM

on

z/OS

Programmer

Response:

None.

System

Action:

None.

ITY0036

LDAP

connection

is

for

read

only.

Symbolic

Identifier

(value):

EIMERR_READ_ONLY

(36)

Explanation:

The

EIM

API

tried

to

add,

delete,

or

change

information

in

an

EIM

domain,

but

the

EIM

handle

is

connected

to

an

LDAP

server

that

is

read

only.

Programmer

Response:

Create

a

new

handle

that

is

connected

to

a

master

LDAP

server

and

try

the

service

again.

.

System

Action:

The

invoked

function

fails

ITY0037

Registry

entry

already

exists

in

EIM.

Symbolic

Identifier

(value):

EIMERR_REGISTRY_EXISTS

(37)

Explanation:

The

EIM

API

tried

to

add

a

system

or

application

registry

to

an

EIM

domain

and

a

registry

with

the

same

name

is

defined

in

the

domain.

Programmer

Response:

Create

a

new

handle

that

is

connected

to

a

master

LDAP

server

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0038

Requested

registry

kind

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_REGKIND_INVAL

(38)

Explanation:

The

value

specified

for

the

registry

kind

is

not

a

valid

registry

kind.

Programmer

Response:

Check

the

documentation

for

the

EIM

API,

correct

the

problem,

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0039

Local

registry

name

is

too

large.

Symbolic

Identifier

(value):

EIMERR_REGNAME_SIZE

(39)

Explanation:

This

is

not

returned

by

EIM

on

z/OS.

Programmer

Response:

None.

System

Action:

None.

ITY0040

Cannot

delete

a

registry

when

an

application

registry

has

this

system

registry

defined.

Symbolic

Identifier

(value):

EIMERR_REG_NOTEMPTY

(40)

Explanation:

The

specified

EIM

registry

could

not

be

deleted

because

an

application

registry

is

defined

for

this

system

registry.

68

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
|
|
|

|
|

|
|

|
|
|

|

|

Programmer

Response:

Delete

the

application

registry

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0041

Unexpected

error

accessing

parameter.

Symbolic

Identifier

(value):

EIMERR_SPACE

(41)

Explanation:

This

is

not

returned

by

EIM

on

z/OS.

Programmer

Response:

None.

System

Action:

None.

ITY0042

EimSSLInfo

is

required.

Symbolic

Identifier

(value):

EIMERR_SSL_REQ

(42)

Explanation:

The

EIM

domain

controller

URL

begins

with

ldaps,

but

the

SSL

information

was

not

specified

as

a

parameter

to

the

EIM

API.

Programmer

Response:

Correct

the

EIM

domain

controller

URL

or

parameter

list

for

the

EIM

API

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0043

Length

of

unique

name

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_UNIQUE_SIZE

(43)

Explanation:

The

length

of

the

uniqueName

is

not

20

bytes

longer

than

the

length

of

the

identifier.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0044

Unknown

exception

or

unknown

system

state.

Symbolic

Identifier

(value):

EIMERR_UNKNOWN

(44)

Explanation:

Not

returned

by

EIM

on

z/OS

Programmer

Response:

None.

System

Action:

None.

ITY0045

URL

has

no

distinguished

name

(required).

Symbolic

Identifier

(value):

EIMERR_URL_NODN

(45)

Explanation:

The

value

specified

for

the

ldapURL

parameter

does

not

contain

a

distinguished

name.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0046

URL

has

no

domain

(required).

Symbolic

Identifier

(value):

EIMERR_URL_NODOMAIN

(46)

Explanation:

The

distinguished

name

portion

of

the

ldapURL

parameter

does

not

begin

with

ibm-eimDomainName=

or

ibm-eimdomainname=.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0047

URL

does

not

have

a

host.

Symbolic

Identifier

(value):

EIMERR_URL_NOHOST

(47)

Explanation:

The

value

specified

for

the

ldapURL

parameter

does

not

contain

an

LDAP

host

name.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0048

URL

has

no

port

(required).

Symbolic

Identifier

(value):

EIMERR_URL_NOPORT

(48)

Explanation:

Not

returned

by

EIM

on

z/OS

Programmer

Response:

None.

System

Action:

None.

ITY0049

URL

does

not

begin

with

ldap://

or

ldaps://.

Symbolic

Identifier

(value):

EIMERR_URL_NOTLDAP

(49)

Explanation:

The

value

specified

for

the

ldapURL

parameter

does

not

begin

with

ldap://

or

ldaps://.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0050

LDAP

connection

can

only

be

made

to

a

replica

LDAP

server.

Symbolic

Identifier

(value):

EIMERR_URL_READ_ONLY

(50)

Explanation:

The

EIM

API

requires

a

connection

to

a

master

or

writable

server.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

Chapter

7.

Messages

69

|

||

|

|
|
|

|
|
|

|

ITY0051

Configuration

URL

is

too

large.

Symbolic

Identifier

(value):

EIMERR_URL_SIZE

(51)

Explanation:

Not

returned

by

EIM

on

z/OS

Programmer

Response:

None.

System

Action:

None.

ITY0052

The

EimIdType

value

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_IDNAME_TYPE_INVAL

(52)

Explanation:

The

value

specified

for

the

type

of

identifier

is

not

one

of

the

allowed

values.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0053

Length

of

EimAttribute

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_ATTRIB_SIZE

(53)

Explanation:

The

length

of

the

value

for

the

handle

attribute

is

fewer

than

8

bytes.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0054

Connection

type

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_CONN_INVAL

(54)

Explanation:

The

value

specified

for

the

connection

type

is

either

not

a

correct

connection

time

or

not

supported

on

this

platform.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0055

Registry

name

must

be

NULL

when

access

type

is

not

EIM_ACCESS_REGISTRY.

Symbolic

Identifier

(value):

EIMERR_REG_MUST_BE_NULL

(55)

Explanation:

The

value

specified

for

the

access

type

requires

the

registry

name

parameter

to

be

NULL.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0056

Unexpected

object

violation.

Symbolic

Identifier

(value):

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Explanation:

The

EIM

API

attempted

to

retrieve

the

entry

UUID

attribute

for

an

LDAP

entry

and

it

was

not

returned.

Programmer

Response:

Contact

your

LDAP

administrator

or

system

programmer.

Provide

this

person

with

the

name

of

the

EIM

API

and

the

error

number

(errno)

and

error

string.

System

Action:

The

called

function

fails.

ITY0057

Reserved

field

is

not

valid.

Symbolic

Identifier

(value):

EIMERR_RESERVE_INVAL

(57)

Explanation:

Not

returned

by

EIM

on

z/OS

Programmer

Response:

None.

System

Action:

None.

ITY0058

Credentials

must

be

NULL

for

the

specified

connection

type.

Symbolic

Identifier

(value):

EIMERR_CREDS_MUST_BE_NULL

(58)

Explanation:

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY0059

Error

occurred

after

the

domain

object

was

created.

Symbolic

Identifier

(value):

EIMERR_DOMAIN_UNUSABLE

(59)

Explanation:

The

EIM

API

was

unable

to

create

the

groups,

identifier,

source

mappings,

or

registries

containers

in

the

EIM

domain.

The

domain

is

in

an

unusable

state.

The

return

code

is

the

value

returned

from

an

ldap_add_s

service.

Programmer

Response:

Contact

your

LDAP

administrator

or

your

systems

programmer.

Provide

this

person

with

the

name

of

the

EIM

API,

the

return

code,

and

the

error

string.

The

LDAP

administrator

will

need

to

delete

the

domain.

System

Action:

The

called

function

fails.

70

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|

|

|

|

|

|

|

|

|

|

ITY4001

Error

errno

returned

from

attempt

to

open

message

catalog

file

--

errnoText

Explanation:

The

utility

failed

to

open

the

message

catalog

named

file.

The

open

attempt

sets

the

error

code

Errno.

errnoText

is

the

associated

explanation.

User

Response:

Possible

causes

for

this

message

include

an

incomplete

NLSPATH

definition

or

insufficient

access

to

the

file.

Correct

the

problem

and

restart

the

utility.

System

Action:

The

utility

fails.

ITY4002

Error

errno

returned

from

attempt

to

retrieve

message

from

catalog

file

--

errnoText

Explanation:

The

utility

failed

to

read

a

message

from

the

message

catalog

named

file.

The

read

attempt

sets

the

error

code

Errno.

errnoText

is

the

associated

explanation.

User

Response:

Possible

causes

for

this

message

include

a

corrupt

catalog

file

or

a

file

having

a

different

service

level

than

the

utility.

Correct

the

problem

and

restart

the

utility.

System

Action:

The

utility

fails.

ITY4010

No

argument

value

specified

for

option

character.

Explanation:

The

option

character

specified

requires

an

argument

value,

but

none

was

specified.

User

Response:

Restart

the

utility

specifying

a

value

for

the

indicated

option,

or

omit

the

option

altogether.

System

Action:

The

utility

fails.

ITY4011

Option

character

not

recognized.

Specify

’-?’

for

utility

syntax.

Explanation:

The

character

specified

is

not

a

defined

option.

User

Response:

You

can

review

utility

syntax

by

specifying

the

-?

option.

Restart

the

utility

specifying

correct

option

characters.

System

Action:

The

utility

fails.

ITY4012

option

not

specified.

Explanation:

The

option

names

the

entity

that

is

required

for

the

function

but

was

not

specified

through

a

command

line

option

or

input

data

record.

User

Response:

Restart

the

utility,

making

sure

to

include

a

value

for

the

requested

option.

System

Action:

The

utility

fails.

ITY4013

Specified

type

value

not

supported

--

value

Explanation:

Type

describes

the

entity

for

which

an

unsupported

value

was

specified.

User

Response:

Refer

to

the

utility

documentation

for

allowable

entity

values.

Restart

the

utility,

specifying

an

allowable

value.

System

Action:

The

utility

fails.

ITY4014

Specified

combination

of

action

’character’

and

object

type

’character’

not

supported.

Explanation:

The

utility

does

not

offer

any

function

corresponding

to

the

specified

action

and

object

option

combination

as

indicated

by

character.

User

Response:

Choose

another

option

combination

and

restart

the

utility.

System

Action:

The

utility

fails.

ITY4015

Please

enter

LDAP

bind

password

for

bindDN:

Explanation:

The

utility

prompts

for

an

LDAP

bind

password

if

not

specified

as

a

command

line

option.

The

password

should

be

the

one

associated

with

the

LDAP

bindDN

specified.

User

Response:

Enter

the

password

as

requested.

The

value

will

not

be

displayed.

System

Action:

The

utility

allows

the

user

one

chance

to

input

a

non-NULL

password

value.

If

one

is

not

specified,

the

utility

fails.

ITY4016

Please

enter

key

file

password

for

fileName:

Explanation:

The

utility

prompts

for

an

SSL

key

database

file

password

if

the

specified

file

exists

but

its

password

was

not

specified

as

a

command

line

option.

The

password

should

be

the

one

associated

with

the

fileName

specified.

Alternatively,

you

can

specify

an

SSL

password

stash

file

by

prefixing

the

stash

file

name

with

″file://″.

User

Response:

Enter

the

password

as

requested.

The

value

will

not

be

displayed.

System

Action:

The

utility

allows

the

user

one

chance

to

input

a

non-NULL

password

value.

If

one

is

not

specified,

the

utility

fails.

ITY4017

Domain

DN

must

be

a

distinguished

name

beginning

with

’ibm-eimDomainName=’.

Explanation:

The

value

specified

is

incorrect

or

incomplete.

Chapter

7.

Messages

71

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

User

Response:

Restart

the

utility,

making

sure

the

domain

value

is

a

distinguished

name

beginning

with

’ibm-eimDomainName=’.

System

Action:

The

utility

fails.

ITY4020

eimadmin

(version)

started

time

with

options

commandLine

Explanation:

The

utility

issues

this

informational

message

when

beginning

its

processing

of

input

records.

Version

indicates

the

program

level.

Time

indicates

the

date

and

time

that

processing

began.

CommandLine

is

an

approximation

of

the

string

issued

to

start

the

utility.

User

Response:

User

Response:

None.

System

Action:

Processing

continues.

ITY4021

Processing

ended

normally.

Explanation:

The

utility

processed

all

records

from

the

input

file;

however,

errors

might

have

occurred

along

the

way.

User

Response:

Check

the

preceeding

ITY4022

message

to

learn

if

any

errors

occurred.

If

so,

correct

them

and,

if

appropriate,

restart

the

utility

against

a

file

of

the

previously-failing

records.

System

Action:

The

utility

stops.

ITY4022

Count

records

processed

--

successCount

successful;

failCount

failed.

Explanation:

When

processing

an

input

file,

the

utility

issues

this

message

as

a

progress

indicator

one

time

every

50

records

and

as

a

completion

summary

statement.

Count

is

the

number

of

data

lines

processed

from

the

input

file.

SuccessCount

is

the

number

processed

without

error,

while

failCount

indicates

the

number

of

records

for

which

errors

occurred.

The

count

value

at

the

end

of

processing

should

equal

the

number

of

data

lines

in

the

input

file

if

message

ITY4021

is

issued.

User

Response:

If

failCount

is

greater

than

zero,

errors

occurred.

Review

preceding

error

messages

to

determine

where

and

why

errors

occurred.

Correct

the

errors

and,

if

appropriate,

restart

the

utility

against

a

file

of

the

previously-failing

records.

System

Action:

The

utility

continues

if

there

are

remaining

unprocessed

input

records

unless

a

severe

error

has

occurred.

ITY4023

Processing

stopped

due

to

error.

Explanation:

The

utility

stopped

processing

before

reaching

the

end

of

data

records

in

the

input

file

because

it

encountered

a

severe

error.

User

Response:

The

last

data

record

error

message

should

identify

the

problem,

but

less

severe

errors

might

have

occurred

as

well.

Review

the

error

messages

to

determine

where

and

why

errors

occurred.

Correct

the

errors

and,

if

appropriate,

restart

the

utility

against

a

file

of

the

previously-failing

records.

System

Action:

The

utility

stops

ITY4024

Label

definition

line

not

found

in

input

file.

Explanation:

The

utility

reached

the

end

of

the

input

file

without

identifying

the

label

definition

line.

User

Response:

Verify

the

input

file

specified

is

the

one

intended

and

that

it

has

a

label

line

that

is

not

prefixed

with

a

comment

character.

Restart

the

utility,

specifying

an

input

file

with

proper

syntax.

System

Action:

The

utility

stops.

ITY4025

Unrecognized

label

found

starting

at

column

position

on

input

line

number.

Explanation:

The

utility

detected

characters

in

the

first

non-blank,

non-comment

line

that

do

not

constitute

a

supported

label.

Position

is

the

character

offset

from

the

beginning

of

the

line,

identified

by

number.

User

Response:

Verify

the

input

file

specified

is

the

one

intended

and

that

the

label

line

contains

only

supported

labels.

Restart

the

utility,

specifying

an

input

file

with

proper

syntax.

System

Action:

The

utility

stops.

ITY4026

Missing

final

label

delimiter

’character’

on

input

line

number.

Explanation:

The

utility

did

not

find

the

required

field

delimeter,

character,

at

the

end

of

the

label

line,

which

is

line

number

of

the

input

file.

User

Response:

Insert

the

missing

delimiter

and

restart

the

utility.

System

Action:

The

utility

stops.

ITY4027

Length

of

input

line

number

exceeds

limit

characters.

Explanation:

The

length

of

input

file

line

number

is

greater

than

the

allowed

limit.

User

Response:

Shorten

the

data

lines

that

exceed

the

limit,

and

restart

the

utility.

System

Action:

The

utility

stops.

72

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|

ITY4028

Error

occurred

while

processing

input

line

number.

Explanation:

The

utility

encountered

an

error

while

processing

line

number

from

the

input

file.

The

next

line

of

error

ouput

echoes

the

data

line

from

the

input

file.

User

Response:

Refer

to

the

error

message

immediately

preceding

this

message

to

discover

the

cause

of

the

error.

Correct

the

error,

and

restart

the

utility.

System

Action:

The

utility

stops

if

a

severe

error

occurred;

otherwise

it

continues

processing

data

records.

ITY4030

Service

name

returned

error

code

--

text

Explanation:

The

utility

called

a

service,

identified

by

name,

that

returned

an

error.

Code

is

the

error

number,

and

text

is

the

associated

error

message.

User

Response:

The

error

text

should

indicate

the

cause

of

the

problem.

If

not,

refer

to

error

documentation

for

the

service.

Correct

the

error,

and

restart

the

utility.

System

Action:

The

utility

stops

if

a

severe

error

occurred;

otherwise

it

continues

processing

data

records.

ITY4031

Service

name

returned

error

code

--

reason.

Explanation:

The

utility

called

a

service,

identified

by

name,

that

returned

an

error.

Code

is

the

error

number,

and

reason

is

the

corresponding

reason

number.

This

message

is

issued

in

place

of

ITY4030

when

the

text

for

the

reason

could

not

be

found.

This

can

happen

for

an

EIM

service

error

if

eimErr2String()

encounters

an

error

reading

its

message

catalog.

User

Response:

The

error

codes

should

indicate

the

cause

of

the

problem.

Correct

the

error

and

restart

the

utility.

Investigate

the

problem

with

the

EIM

message

catalog.

System

Action:

The

utility

stops

if

a

severe

error

occurred,

otherwise

it

continues

processing

data

records.

ITY4040

Internal

error

occurred

--

text

Explanation:

An

unexpected

internal

error

occurred

as

described

by

text.

User

Response:

If

the

problem

re-occurs

and

cannot

be

solved,

contact

service.

System

Action:

The

utility

stops

if

a

severe

error

occurred,

otherwise

it

continues

processing

data

records.

ITY4041

Program

exception

occurred.

Explanation:

An

unexpected

program

exception

stopped

utility

processing.

User

Response:

Review

the

generated

CEEDUMP

for

diagnostic

information

that

can

help

you

resolve

the

problem.

It

is

unlikely

that

the

requested

function

completed

successfully.

List

the

entity

specified

for

the

function

to

determine

its

status

and

retry

the

function

if

necessary.

If

the

exception

occurrred

while

the

utility

was

processing

records

from

an

input

file,

message

ITY4028

indicates

the

input

line

number

and

message

ITY4022

indicates

the

number

of

records

successfully

processed.

System

Action:

Processing

stops.

The

recovery

routine

generates

a

symptom

record.

ITY6001

Application

is

not

APF-authorized.

Symbolic

Identifier

(value):

EIMERR_ZOS_NO_APF_AUTH

(6001)

Explanation:

An

application

that

was

not

APF-authorized

called

an

EIM

API

that

requires

APF

authorization.

Programmer

Response:

Ensure

the

application

is

linked

with

AC=1,

has

the

APF

extended

attribute

set

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6002

RACROUTE

REQUEST=EXTRACT

error

retrieving

EIM

configuration

information

from

the

callers’s

USER

profile.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_USER_XTR

(6002)

Explanation:

The

EIM

API

failed

while

retrieving

EIM

information

from

RACF.

A

RACROUTE

REQUEST=EXTRACT

error

occurred

while

retrieving

the

EIM

segment

from

the

caller’s

USER

profile.

Failing

user

ID

and

return

codes

appear

in

the

EimRC

substitution

text.

The

substition

text

is:

USER(user

id

)

SAF

RC(xxxxxxxx)

RACF

RC(xxxxxxxx)

RACF

RSN(xxxxxxxx)

The

return

and

reason

codes

are

in

hex.

The

RACROUTE

return

codes

are

documented

in

z/OS

Security

Server

RACROUTE

Macro

Reference.

Programmer

Response:

Use

the

return

codes

to

resolve

the

problem

in

the

user

EIM

segment

and

try

the

service

again.

System

Action:

The

called

function

fails.

Chapter

7.

Messages

73

ITY6003

RACROUTE

REQUEST=EXTRACT

error

retrieving

EIM

information

from

a

RACF

profile.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_XTR_EIM

(6003)

Explanation:

The

EIM

API

failed

while

retrieving

EIM

information

from

RACF.

A

RACROUTE

REQUEST=EXTRACT

error

occurred

while

retrieving

the

EIM

segment

from

a

RACF

profile.

Failing

user

ID,

class,

profile

name

and

return

codes

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

ID)

CLASS(class)

PROFILE(profile

name)

SAF

RC(xxxxxxxx)

RACF

RC(xxxxxxxx)

RACF

RSN(xxxxxxxx)

The

return

and

reason

codes

are

in

hex.

The

RACROUTE

return

codes

are

documented

in

z/OS

Security

Server

RACROUTE

Macro

Reference.

Programmer

Response:

Use

the

return

codes

to

resolve

the

problem

in

the

profile

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6004

EIM

domain

distinguished

name

is

missing.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_XTR_DOMAINDN

(6004)

Explanation:

The

EIM

API

failed

while

retrieving

EIM

information

from

RACF.

The

EIM

segment

DOMAINDN

field

has

a

length

of

zero.

Failing

user

ID,

class

and

profile

name

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

id)

CLASS(class)

PROFILE(profile

name)

Programmer

Response:

Ensure

the

EIM

segment

DOMAINDN

field

is

defined

properly

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6005

RACROUTE

REQUEST=EXTRACT

error

retrieving

PROXY

information

from

a

RACF

profile.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_XTR_PROXY

(6005)

Explanation:

The

EIM

API

failed

while

retrieving

PROXY

information

from

RACF.

A

RACROUTE

REQUEST=EXTRACT

error

occurred

while

retrieving

the

PROXY

segment

from

a

RACF

profile.

Failing

user

ID,

class,

profile

name

and

return

codes

will

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

id)

CLASS(class)

PROFILE(profile

name)

SAF

RC(xxxxxxxx)

RACF

RC(xxxxxxxx)

RACF

RSN(xxxxxxxx)

The

return

and

reason

codes

are

in

hex.

The

RACROUTE

return

codes

are

documented

in

z/OS

Security

Server

RACROUTE

Macro

Reference.

Programmer

Response:

Use

the

return

codes

to

resolve

the

problem

in

the

profile

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6006

PROXY

LDAP

host

is

missing.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_XTR_LDAPHOST

(6006)

Explanation:

The

EIM

API

failed

while

retrieving

PROXY

information

from

RACF.

The

PROXY

segment

LDAPHOST

field

has

a

length

of

zero.

Failing

user

ID,

class

and

profile

name

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

id)

CLASS(class)

PROFILE(profile

name)

Programmer

Response:

Ensure

the

PROXY

segment

LDAPHOST

field

is

defined

properly

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6007

PROXY

bind

distinguished

name

is

missing.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_XTR_BINDDN

(6007)

Explanation:

The

EIM

API

failed

while

retrieving

PROXY

information

from

RACF.

The

PROXY

segment

BINDDN

field

has

a

length

of

zero.

Failing

user

ID,

class

and

profile

name

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

id)

CLASS(class)

PROFILE(profile

name)

Programmer

Response:

Ensure

the

PROXY

segment

BINDDN

field

is

defined

properly

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6008

R_DCEKEY

callable

service

failed.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_R_DCEKEY

(6008)

Explanation:

The

EIM

API

failed

while

retrieving

PROXY

information

from

RACF.

An

error

occurred

during

R_DCEKEY

callable

service

processing.

Failing

user

ID,

class,

profile

name

and

return

codes

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

id)

CLASS(class)

PROFILE(profile

name)

SAF

RC(xxxxxxxx)

RACF

RC(xxxxxxxx)

RACF

RSN(xxxxxxxx)

74

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|

The

return

and

reason

codes

are

in

hex.

The

R_DCEKEY

return

codes

are

documented

in

z/OS

Security

Server

RACF

Callable

Services.

Programmer

Response:

Use

the

return

codes

to

resolve

the

R_DCEKEY

problem

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6009

R_DCEKEY

callable

service

failed.

Bind

password

is

missing.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_R_DCEKEY_BINDPW

(6009)

Explanation:

The

EIM

API

failed

while

retrieving

PROXY

information

from

RACF.

An

error

occurred

during

R_DCEKEY

callable

service

processing.

The

PROXY

segment

BINDPW

field

has

a

length

of

zero.

Failing

user

ID,

class,

profile

name

and

return

codes

appear

in

the

EimRC

substitution

text.

The

substitution

text

is:

USER(user

id)

CLASS(class)

PROFILE(profile

name)

SAF

RC(xxxxxxxx)

RACF

RC(xxxxxxxx)

RACF

RSN(xxxxxxxx)

The

return

and

reason

codes

are

in

hex.

The

R_DCEKEY

return

codes

are

documented

in

z/OS

Security

Server

RACF

Callable

Services.

Programmer

Response:

Ensure

the

PROXY

segment

BINDPW

field

is

defined

properly

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6010

No

task

or

address

space

ACEE

was

found.

Symbolic

Identifier

(value):

EIMERR_ZOS_NO_ACEE

(6010)

Explanation:

The

EIM

API

service

failed

because

a

task

or

address

space

ACEE

could

not

be

found.

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6011

Error

occurred

when

converting

data

between

code

pages.

%1$s

Symbolic

Identifier

(value):

EIMERR_ZOS_DATA_CONVERSION

(6011)

Explanation:

An

error

occurred

when

converting

data

between

code

pages.

Check

the

EimRC

substitution

text

for

more

specific

code

page

errors.

The

EIM

API

is

unable

to

determine

the

current

code

page

or

cannot

translate

between

the

code

pages

specified

in

the

substitution

text.

The

substition

text

is:

Failed

converting

to

UTF-8

from

<current

locale

codeset>

Programmer

Response:

Correct

the

error

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6012

The

EIM

API

is

not

supported.

Symbolic

Identifier

(value):

EIMERR_API_NOTSUPP

(6012)

Explanation:

The

called

function

is

not

available

to

z/OS

programs.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

for

alternative

methods

of

providing

the

function.

Correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

ITY6013

Password

protection

value

not

supported.

Symbolic

Identifier

(value):

EIMERR_PROTECT_NOTSUPP

(6013)

Explanation:

The

value

specified

for

password

protection

is

either

incorrect

or

not

supported

on

this

platform.

Programmer

Response:

Check

the

documentation

for

the

EIM

API

and

verify

the

value

is

supported.

If

the

value

is

not

supported

or

an

incorrect

value

was

specified

for

the

attribute,

correct

the

program

and

try

the

service

again.

System

Action:

The

called

function

fails.

Chapter

7.

Messages

75

|
|

76

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Chapter

8.

The

eimadmin

utility

The

eimadmin

utility

is

a

z/OS

UNIX

System

Services

Shell

tool.

An

administrator

can

use

it

to

define

an

EIM

domain

and

prime

the

domain

with

registries,

identifiers,

and

associations

between

identifiers

and

registry

users.

An

administrator

can

also

use

eimadmin

to

give

users

(and

other

administrators)

access

to

an

EIM

domain

or

list

or

remove

the

EIM

entities.

An

administrator

can

use

the

eimadmin

command

in

two

ways:

v

By

including

information

with

command-line

options

on

an

eimadmin

command

v

By

including

information

in

an

input

file

that

an

eimadmin

command

references

You

can

create

the

file

manually

or

by

exporting

records

from

a

data

base.

(See

“Using

an

input

file”

on

page

89

for

more

information.)

The

administrator

directs

utility

processing

by

specifying

a

combination

of

command-line

options.

(See

“Purpose”

on

page

78

and

“Parameters”

on

page

80

for

more

information.)

©

Copyright

IBM

Corp.

2004

77

eimadmin

Purpose

Perform

actions

on

the

following

objects:

v

Domains

v

Registries

v

Identifiers

v

Associations

v

Access

authorities

The

actions

you

can

perform

include

the

following:

v

Add

an

object

v

Purge

an

object

v

List

objects

(for

example,

list

directories,

list

registries,

and

so

forth)

v

Modify

attributes

associated

with

objects

v

Erase

attributes

Format

eimadmin

-a

|

-p

|

-l

|

-m

|

-e

-D

|

-R

|

-I

|

-A

|

-C

[-s

switch]

[-v

verboseLevel]

[-c

accessType]

[-f

accessUserType]

[-g

registryParent]

[-i

identifier]

[-j

otherIdentifier]

[-k

URI]

[-n

description]

[-o

information]

[-q

accessUser]

[-r

registryName]

[-t

associationType]

[-u

registryUser]

[-x

registryAlias]

[-y

registryType]

[-z

registryAliasType]

[-d

domainDN]

[-h

ldapHost]

[-b

bindDN]

[-w

bindPassword]

[-K

keyFile

[

-P

keyFilePassword]

[-N

certificateLabel]]

[-S

connectType]

Table

21

on

page

79

summarizes

the

objects

and

actions

and

the

flags

required

and

optional

for

each.

Tips:

v

Each

eimadmin

command

must

include

one

action

and

one

object

type.

Depending

on

the

object

and

action

you

are

performing

on

it,

EIM

might

require

additional

parameters.

v

Some

options

are

for

multi-value

attributes,

which

you

can

specify

more

than

once.

Other

options

are

for

single-value

attributes,

which

you

can

specify

once.

(If

you

repeat

an

option

that

is

for

a

single-value

attribute,

eimadmin

processes

only

the

first

value

it

encounters

in

the

command.)

Other

than

this,

the

order

in

which

you

specify

parameters

is

not

important.

The

eimadmin

utility

78

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

v

You

can

code

the

parameters

of

the

eimadmin

command

in

several

ways:

–

You

can

concatenate

an

action

and

an

object,

but

must

omit

the

embedded

hyphen:

-aD

–

You

can

include

both

hyphens

but

must

separate

the

two

options

with

a

space:

-a

-D

–

In

other

words,

the

following

is

not

valid

because

it

includes

both

hyphens

and

there

is

no

space

before

-D:

-a-D

Notes:

The

following

table

summarizes

required

and

optional

flags

for

each

object

type

and

action

pair.

You

can

specify

the

value

for

most

options

in

an

input

file

instead

of

specifying

it

on

the

command

line.

See

“Using

an

input

file”

on

page

89

for

more

information.

See

Table

25

on

page

91

for

the

mapping

of

file

labels

with

command

line

options.

Rule:

The

required

connection

flags,

generally

independent

of

the

specified

object

type

and

action,

are

shown

in

Table

21.

Table

21.

Required

and

optional

flags

Object

Action

Required

Optional

Comments

D

a

d,

h

n

Add

a

domain.

p

d,

h

s

Remove

a

domain.

If

the

domain

is

not

empty,

include

’-s

RMDEPS’.

l

d,

h

List

domain(s).

Specify

-d’*’

to

list

all

domains.

m

d,

h

n

Modify

or

add

a

domain

attribute.

e

d,

h

n

Remove

or

clear

a

domain

attribute.

R

a

r,y

g,

k,

n,

x,

z

Add

a

registry.

The

value

specified

for

’-r’

is

assumed

to

be

a

new

system

registry

unless

’-g’

is

also

specified,

in

which

case

the

’-r’

value

indicates

a

new

application

registry.

p

r

s

Remove

a

registry.

l

r

y

List

registries.

Return

all

registry

entries

in

the

domain

that

match

the

specified

’-r’

value

search

filter,

which

might

contain

the

wild

card

’*’.

m

r

k,

n,

x,

z

Modify

or

add

a

registry

attribute,

including

a

registry

alias.

e

r

k,

n,

x,

z

Remove

or

clear

a

registry

attribute,

including

a

registry

alias.

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

79

|
|
|
|
|
|

||

|||||

|||||

||||
|

||||

||||

||||

|||||
|
|
|

||||

||||
|
|
|

||||
|

||||
|

Table

21.

Required

and

optional

flags

(continued)

Object

Action

Required

Optional

Comments

I

a

i

j,

n,

o

Add

an

identifier.

p

i

Remove

an

identifier.

l

i

List

an

identifier

by

unique

identifier

name.

Return

all

identifier

entries

in

the

domain

that

match

the

specified

’-i’

value

search

filter,

which

might

contain

the

wild

card

’*’.

j

List

an

identifier

by

non-unique

identifier

name.

Return

all

identifier

entries

in

the

domain

that

have

a

non-unique

identifier

matching

the

specified

’-j’

value

search

filter,

which

might

contain

the

wild

card

’*’.

m

i

j,

n,

o

Modify

or

add

an

identifier

attribute.

e

i

j,

n,

o

Remove

or

clear

an

identifier

attribute.

A

a

i,

r,

u,

t

n,

o

Add

an

association.

You

can

repeat

the

’-t’

option

to

add

multiple

associations

types.

Flags

’-n’

and

’-o’

are

relevant

only

to

TARGET

associations.

p

i,

r,

u,

t

Remove

an

association.

You

can

repeat

the

’-t’

option

to

remove

multiple

associations

types.

l

i

t

List

association(s).

Return

all

associations

in

the

domain

for

specified

’-i’

unique

identifier.

Specify

a

’-t’

value

to

limit

the

entries

returned

to

the

given

association

type.

m

r,

u

n,

o

Modify

or

add

an

association

attribute.

Flags

’-n’

and

’-o’

are

relevant

only

to

TARGET

associations.

e

r,

u

n,

o

Remove

or

clear

an

association

attribute.

Flags

’-n’

and

’-o’

are

relevant

only

to

TARGET

associations.

C

a

c,

q,

f

r

Add

access.

For

access

type

REGISTRY,

provide

a

specific

’-r’

registry

value,

or

a

wild

card

’*’

indicating

access

to

all

registries

in

the

domain.

p

c,

q,

f

r

Remove

access.

For

access

type

REGISTRY,

provide

a

specific

’-r’

registry

value,

or

a

wild

card

’*’

indicating

access

to

all

registries

in

the

domain.

l

c

r

List

access

by

type.

For

access

type

REGISTRY,

provide

a

specific

’-r’

registry

value,

or

a

wild

card

’*’

indicating

access

to

all

registries

in

the

domain.

q,

f

List

access

by

user.

Parameters

Actions

-a|-p|-l|-m|-e

This

is

the

action

you

want

to

perform:

-a

Add

an

object.

(Create

an

object

definition

and

its

attributes.)

The

eimadmin

utility

80

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|||||

|||||

||||

||||
|
|
|

|||
|
|
|
|

||||

||||

|||||
|
|
|

||||
|

||||
|
|
|

||||
|
|

||||
|
|

|||||
|
|
|

||||
|
|
|

||||
|
|
|

|||
|

|

-p

Purge

an

object.

(Remove

an

object

definition

and

its

attributes.)

-l

List

an

object.

(Retrieve

an

object

definition

and

its

attributes.)

-m

Modify

an

attribute.

(Alter

an

attribute

of

an

existing

object,

either

by

changing

a

single-value

attribute

or

adding

a

multi-value

attribute.)

-e

Erase

an

attribute.

(Clear

a

single-value

attribute

or

remove

a

multi-value

attribute.)

Object

types

-D|-R|-I|-A|-C

This

parameter

specifies

the

object

types

on

which

to

perform

the

action:

-D

A

domain.

This

is

a

collection

of

identifiers,

user

registries,

and

associations

between

identifiers

and

user

IDs,

stored

within

an

LDAP

directory.

For

more

information

about

EIM

domains,

see

page

“EIM

domain”

on

page

6.)

-R

A

registry.

This

is

the

name

of

a

user

registry.

Associations

are

defined

between

identifiers

and

user

IDs

in

the

user

registry.

(For

more

information,

see

page

“EIM

domain”

on

page

6.)

-I

An

identifier.

This

is

the

name

of

a

person

or

entity

participating

in

an

EIM

domain.

(For

more

information,

see

page

“EIM

domain”

on

page

6.)

-A

An

association.

This

is

a

relationship

between

an

identifier

in

the

EIM

domain

with

a

user

ID.

(For

more

information,

see

page

“EIM

domain”

on

page

6.)

-C

An

access

authority.

This

is

an

EIM-defined

LDAP

access

control

group.

(For

more

information,

see

page

“Authorities”

on

page

17.)

Processing

controls,

attributes,

and

connection

values

Processing

controls

Processing

controls

include

the

following:

-s

switch

The

switch

specifies

a

value

that

affects

the

way

the

eimadmin

utility

functions

operate.

You

can

specify

the

following

value:

RMDEPS

Remove

dependents

when

removing

a

domain

or

system

registry.

This

facilitates

removing

a

domain

by

first

removing

all

identifiers

and

registries

defined

for

the

domain.

It

facilitates

the

removing

a

system

registry

by

first

removing

all

applications

registries

defined

for

the

registry.

Attention:

The

eimadmin

utility

does

not

warn

you

that

dependents

exist

before

removing

them,

so

use

this

switch

carefully.

-v

verboseLevel

The

verboseLevel

is

an

integer

from

1

to

10,

that

controls

the

amount

of

trace

detail

that

the

eimadmin

utility

displays.

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

81

(It

is

for

diagnosing

problems

in

the

eimadmin

utility.)

The

default

value

of

0

indicates

no

trace

information.

You

can

specify

an

integer

value

from

1

to

10,

from

the

least

to

greatest

amount

of

trace

information.

The

utility

checks

the

value

and

displays

trace

information

defined

for

the

level

and

all

lower

levels.

The

following

levels

trigger

specific

information:

v

″3″,

which

indicates

EIM

API

call

parameters

and

return

values

v

″6″,

which

indicates

option

values

and

input

file

labels

v

″9″,

which

indicates

utility

routine

entry

and

exit

statements

Objects

and

attributes

Rule:

Options

are

single-valued

unless

indicated

otherwise.

The

section

that

follows

explains

required

and

optional

attributes

and

their

parameters.

Tips:

v

You

can

specify

these

attributes

as

command

options

or

as

fields

in

input

files.

If

you

are

specifying

command

options,

you

must

enclose

values

with

imbedded

blanks

within

quotation

marks

(″)

or

(’).

Quotation

marks

are

optional

for

single-word

values.

Specifying

a

multi-word

value

without

quotation

marks

in

effect

truncates

the

command

line

options;

values

after

the

first

word

are

truncated.

v

The

following

special

characters

are

not

allowed

in

registryName,

registryParent,

or

identifier:

,

=

+

<

>

#

;

\

*

Rule:

Except

where

indicated,

the

parameters

are

single-value

options.

If

you

specify

an

option

more

than

once,

the

utility

processes

only

the

first

occurrence.

-c

accessType

The

accessType

specifies

the

scope

of

access

authority

that

a

user

has

over

the

EIM

domain.

It

must

be

one

of

the

following

values:

ADMIN

Specifies

administrative

access.

REGISTRY

Specifies

registry

access.

If

you

specify

REGISTRY,

you

must

also

specify

a

registry

value

(-r).

The

registry

value

can

be

a

specific

registry

name

or

it

can

be

an

asterisk

(*)

to

indicate

access

to

all

registries.

IDENTIFIER

Specifies

identifier

access.

MAPPING

Specifies

mapping

operations

access.

-f

accessUserType

The

accessUserType

specifies

the

type

for

the

access

user

name.

It

must

be

one

of

the

following:

The

eimadmin

utility

82

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|

DN

The

accessUser

is

a

distinguished

name.

(See

page

83

for

a

description

of

accessUser.)

KERBEROS

The

accessUser

is

a

Kerberos

identity.

(See

page

83

for

a

description

of

accessUser.)

-g

registryParent

The

registryParent

specifies

the

name

of

a

system

registry.

An

application

registry

is

a

subset

of

a

system

registry.

If

you

are

adding

an

application

registry,

you

must

use

the

-r

option

and

the

-g

option.

The

-r

value

is

the

application

registry

you

are

defining.

The

-g

option

is

the

preexisting

system

registry.

-i

identifier

The

identifier

is

a

unique

identifier

name.

Example:

John

Day

-j

otherIdentifier

The

otherIdentifier

specifies

a

non-unique

identifier

name.

Example:

John

Note:

You

can

specify

this

option

multiple

times

to

assign

multiple

non-unique

identifiers.

-k

URI

The

URI

specifies

the

Universal

Resource

Identifier

(URI)

for

the

registry

(if

one

exists).

-n

description

The

description

specifies

any

text

(that

you

provide)

to

associate

with

the

domain,

registry,

identifier,

or

association.

Note:

You

can

define

a

user

description

only

for

target

associations.

-o

information

The

information

specifies

additional

information

to

associate

with

an

identifier

or

association.

Note:

You

can

define

user

information

only

for

target

associations.
You

can

specify

this

option

multiple

times

to

assign

multiple

pieces

of

information.

-q

accessUser

The

accessUser

specifies

the

user

distinguished

name

(DN)

or

the

Kerberos

identity

with

EIM

access,

depending

on

the

accessUserType

specified.

-r

registryName

The

registryName

specifies

the

name

of

a

registry.

When

you

add

a

new

registry,

eimadmin

considers

the

registry

a

system

registry

unless

you

also

specify

the

-g

option.

If

you

specify

the

-g

option,

eimadmin

considers

the

registry

an

application

registry.

-t

associationType

The

associationType

specifies

the

relationship

between

an

identifier

and

a

registry.

It

must

be

one

of

the

following:

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

83

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|

|
|

|

|

|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

ADMIN

Indicates

associating

a

user

ID

with

an

identifier

for

administrative

purposes.

SOURCE

Indicates

that

the

user

ID

is

the

source

(or

from)

of

a

lookup

operation.

TARGET

Indicates

that

the

user

ID

is

the

target

(or

to)

of

a

lookup

operation.

Note:

You

can

specify

this

option

multiple

times

to

define

multiple

relationships.

-u

registryUser

The

registryUser

specifies

the

user

ID

of

the

user

defined

in

the

registry.

-x

registryAlias

The

registryAlias

specifies

another

name

for

a

registry.

See

“Working

with

registry

aliases”

on

page

42

for

information

about

working

with

aliases.

You

can

specify

this

option

multiple

times

to

assign

multiple

aliases.

-y

registryType

The

registryType

specifies

the

type

of

registry.

Predefined

types

that

eimadmin

recognizes

include

the

following:

v

RACF

v

OS400

v

KERBEROS

(for

case

ignore)

v

KERBEROSX

(for

case

exact)

v

AIX

v

NDS

v

LDAP

v

PD

(Policy

Director)

v

WIN2K

You

can

also

create

your

own

types

by

concatenating

a

unique

OID

with

one

of

the

following

two

normalization

methods:

v

-caseIgnore

v

-caseExact

(See

“EIM

registry

definition”

on

page

10

for

more

information.)

-z

registryAliasType

The

registryAliasType

specifies

the

type

for

a

registry

alias.

You

can

invent

your

own

value

or

use

one

of

the

following

suggested

values:

v

DNSHostName

v

KerberosRealm

v

IssuerDN

v

RootDN

v

TCPIPAddress

v

LdapDnsHostName

The

eimadmin

utility

84

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|

|

|

Note:

For

a

set

of

command

line

options

or

single

input

data

record,

the

eimadmin

utility

recognizes

only

the

first

specification

of

registryAliasType.

However,

the

eimadmin

utility

does

recognize

multiple

registry

aliases

and

associates

all

of

them

with

the

single

registryAliasType.

Connection

values

The

connection

information

needed

by

the

utility

includes

the

EIM

domain

(-d)

and

its

controlling

server

(-h),

the

identity

(-b,-w;

or

-K,-P,-N)

with

which

to

authenticate

(bind)

to

the

server,

and

the

authentication

method

(-S).

For

object

types

other

than

domain

(-D),

specifying

the

domain,

server

and

bind

identity

is

optional.

If

not

specified,

the

information

is

retrieved

from

a

RACF

profile.

See

“Storing

LDAP

binding

information

in

a

profile”

on

page

48

for

more

information.

Rule:

If

any

of

the

connect

information

is

specified,

the

full

set

of

values

required

for

the

connect

type

must

be

specified.

Omitting

one

or

more

values

(but

not

all)

results

in

an

error.

Table

22

shows

the

required

and

optional

values

for

each

connect

and

host

type

when

specified

with

the

eimadmin

command:

Table

22.

Required

connection

values

Connection

type

Host

type

secure(ldaps://)

/

non-secure(ldap://)

Required

values

Optional

values

SIMPLE

or

CRAM-MD5

secure

-d,

-h,

-b,

-w,

-K,

-P

-N

non-secure

-d,

-h,

-b,

-w

EXTERNAL

secure

-d,

-h,

-K,

-P,

-S

-N

non-secure

unsupported

unsupported

GSSAPI

secure

-d,

-h,

-K,

-P,

-S

-N

non-secure

-d,

-h,

-S

Tips:

v

Exceptions:

–

The

domain

option

(-d)

is

not

required

for

domain

functions

if

the

value

is

specified

through

an

input

file.

–

An

SSL

key

database

file

password

or

stash

file

(-P)

is

not

required

when

-K

specifies

a

RACF

key

ring.

v

The

utility

prompts

for

the

simple

bind

password

if

required

and

-w

is

not

specified

on

the

command

line,

and

prompts

for

the

SSL

key

database

file

password

if

required

and

-P

is

not

specified

on

the

command

line.

-S

connectType

The

connectType

is

the

method

of

authentication

to

the

LDAP

server.

It

must

be

one

of

the

following

values:

v

SIMPLE

(bind

DN

and

password)

v

CRAM-MD5

(bind

DN

and

protected

password)

v

EXTERNAL

(digital

certificate)

v

GSSAPI

(Kerberos)

If

not

specified,

the

connect

type

defaults

to

SIMPLE.

For

connect

type

GSSAPI,

the

default

Kerberos

credential

is

used.

This

credential

must

be

established

using

a

service

such

as

kinit

prior

to

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

85

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

||

|

|
|
|||

|
|
|||

|||

||||

|||

||||

|||

|

|

|
|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|
|

running

eimadmin.

For

kinit

and

related

information,

refer

to

z/OS

Integrated

Security

Services

Network

Authentication

Service

Administration.

-d

domainDN

The

domainDN

is

the

full

distinguished

name

(DN)

of

the

EIM

domain.

It

begins

with

’ibm-eimDomainName=’.

It

further

consists

of:

v

domainName

—

The

name

of

the

EIM

domain

you

are

creating,

for

example:

MyDomain

v

parent

distinguished

name

—

The

distinguished

name

for

the

entry

immediately

above

the

given

entry

in

the

directory

information

tree

hierarchy,

for

example,

″o=ibm,c=us″.

Example:

ibm-eimDomainName=MyDomain,o=ibm,c=us

-h

ldapHost

The

ldapHost

is

the

URL

and

port

for

the

LDAP

server

controlling

the

EIM

data.

The

format

is:

Example:

ldap://some.ldap.host:389

ldaps://secure.ldap.host:636

-b

bindDN

The

bindDN

is

the

distinguished

name

to

use

for

the

simple

bind

to

LDAP.

The

format

is:

Examples:

cn=Johns

Admin

or

cn=Johns

Admin,o=ibm,c=us

-w

bindPassword

The

bindPassword

is

the

password

associated

with

the

bind

DN

(for

the

LDAP

bind).

-K

keyFile

The

keyFile

is

the

name

of

the

SSL

key

database

file,

including

the

full

path

name.

If

the

file

cannot

be

found,

it

is

assumed

to

be

the

name

of

a

RACF

key

ring

which

contains

authentication

certificates.

This

value

is

required

for

SSL

communications

with

a

secure

LDAP

host

(prefixed

ldaps://).

Example:

/u/eimuser/ldap.kdb

-P

keyFilePassword

The

keyFilePassword

is

the

password

required

to

access

the

encrypted

information

in

the

key

database

file.

Alternatively,

you

can

specify

an

SSL

password

stash

file

for

this

option

by

prefixing

the

stash

file

name

with

file://.

Example:

secret

or

file:///u/eimuser/ldapclient.sth

The

eimadmin

utility

86

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|
|

|
|

|
|
|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|

|
|
|

Note:

The

eimadmin

utility

prompts

for

a

key

file

password

if

you

specify

the

name

of

a

key

database

file

for

-K

but

not

the

-P

option

on

the

command

line.

-N

certificateLabel

The

certificateLabel

identifies

which

certificate

to

use

from

the

key

database

file

or

RACF

key

ring.

If

this

option

is

not

specified,

the

certificate

marked

as

the

default

in

the

file

or

ring

is

used.

Example:

eimcert

Authorization

The

LDAP

administrator

has

the

authority

to

use

the

eimadmin

utility

and

access

to

all

the

functions

it

provides.

EIM

administrators

can

use

the

utility

as

long

as:

v

They

have

a

bind

distinguished

name

and

password

defined

at

the

LDAP

server

containing

the

EIM

domain

v

Their

bind

distinguished

name

has

one

of

the

EIM

authorities:

–

EIM

administrator

–

EIM

registries

administrator

–

EIM

registry

X

administrator

–

EIM

identifiers

administrator

See

“Authorities”

on

page

17

for

details

about

the

specific

tasks

each

administrator

can

perform.

Messages

Eimadmin

issues

a

message

to

prompt

for

a

password

or

to

indicate

an

error.

Do

not

expect

to

receive

a

message

for

successful

completion

unless

you

use

an

input

file.

When

processing

records

in

an

input

file,

eimadmin

issues

an

informational

message

for

the

start,

stop,

and

a

progress

message

for

every

50

records.

Note:

Eimadmin

returns

one

or

more

data

lines

for

list

(-l)

requests

unless

it

finds

no

matching

EIM

entries

or

the

bind

identity

is

not

authorized

to

that

data.

For

eimadmin

error

messages,

see

Chapter

7,

“Messages,”

specifically

page

71

to

page

73.

Error

codes

The

eimadmin

utility

returns

one

of

the

following

exit

codes

upon

completion:

Table

23.

Eimadmin

utility

exit

codes

Exit

code

Meaning

0

No

errors

encountered.

4

One

or

more

errors

encountered

but,

if

you

specified

an

input

file,

all

records

were

processed

8

A

severe

error

occurred

that

caused

processing

to

stop

before

reaching

the

end

of

an

input

file,

if

specified.

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

87

|
|
|

|
|
|
|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

Examples

for

listing

various

objects

without

an

input

file

v

List

a

single

domain

by

entering

a

command

such

as

the

following:

eimadmin

-lD

-h

ldap://my.server

-b

"cn=EIM

admin,o=My

Company,

c=US"

-d

"ibm-eimDomainName=My

Employees,o=My

Company,

c=US"

This

produces

output

such

as

the

following:

domain

name:

My

Employees

domain

DN:

ibm-eimDomainName=My

Employees,o=My

Company,

c=US

description:

employees

in

my

company

v

List

a

single

registry

by

entering

a

command

such

as

the

following:

eimadmin

-lR

-r

MyRegistry

This

produces

output

such

as

the

following:

registry:

MyRegistry

registry

kind:

APPLICATION

registry

parent:

MySystemRegistry

registry

type:

RACF

description:

my

racf

registry

URI:

ldap://some.big.host:389/profileType=User,cn=RACFA,o=My

Company,

c=US

registry

alias:

TCPGROUP

registry

alias

type:

DNSHostName

v

List

identifiers

by

entering

a

command

such

as

the

following:

eimadmin

-lI

-i

"J.C.Smith"

This

produces

output

such

as

the

following:

unique

identifier:

J.C.Smith

other

identifier:

J.C.Smith

other

identifier:

Joseph

other

identifier:

Joe

description:

004321

information:

D01

information:

1990-04-11

v

List

target

associations

by

entering

a

command

such

as

the

following:

eimadmin

-lA

-i

"J.C.Smith"

-t

target

This

produces

output

such

as

the

following:

unique

identifier:

J.C.Smith

registry:

MyRegistry

registry

type:

RACF

association:

target

registry

user:

SMITH

description:

TSO

information:

1989-08-01

information:

ADMIN1

v

List

accesses

by

entering

a

command

such

as

the

following:

eimadmin

-lC

-c

admin

This

produces

output

such

as

the

following:

access

user:

cn=JoeUser,o=My

Company,

c=us

access

user:

cn=admin1,o=My

Company,

c=us

access

user:

cn=admin2,o=My

Company,

c=us

The

eimadmin

utility

88

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Using

an

input

file

You

can

use

the

eimadmin

command

to

add

objects

and

associated

attribute

values

to

an

EIM

domain

by

specifying

command-line

options

or

specifying

an

input

file

name.

Tip:

The

advantage

of

using

a

file

to

add

information

such

as

associated

attributes

to

an

EIM

domain

is

that

you

can

input

any

number

of

entities

of

the

same

type

with

a

single

call

to

eimadmin.

For

example,

you

might

want

define

a

large

number

of

identities

that

correspond

to

users

in

a

platform-specific

database

such

as

RACF.

You

can

create

your

input

file

manually

or

export

it

from

a

database.

For

example,

you

can

use

IRRDBU00

to

extract

records

from

the

RACF

database.

Tip:

To

pass

the

input

file

to

eimadmin,

use

UNIX

standard

input

(stdin).

The

eimadmin

utility

interprets

the

data

in

the

input

file

according

to

the

command

line

options

you

specify

on

an

eimadmin

command.

For

instance,

if

you

use

the

-aI

option

combination,

this

directs

eimadmin

to

look

for

identifier

information

within

the

file

and

add

it

to

the

EIM

domain.

Input

file

requirements

The

eimadmin

requirements

for

the

input

file

and

its

records

include

the

following:

v

The

file

must

be

sequential.

v

By

convention,

each

file

line

consists

of

a

single

record.

(Only

one

record

is

allowed

per

file

line.

Records

cannot

span

lines.)

v

Records

have

a

maximum

length

of

10,000

characters.

v

Records

contain

column-delimited

fields.

(The

label

line

defines

these

fields.

See

“The

label

line”

on

page

90

for

more

information.)

The

fields

of

each

record

contain

character

values

representing

a

single

object

and

optional

associated

attributes.

Tip:

If

you

are

using

an

input

file

to

add

identifiers,

each

record

should

contain

a

value

that

can

serve

as

a

unique

EIM

identifier

for

the

user.

IBM

recommends

that

you

sort

the

records

by

the

field

that

is

unique.

This

unique

identifier

might

be

an

employee

name

or

number,

but

it

is

unlikely

to

be

the

user

ID

for

a

registry.

The

identifier

chosen

must

be

unique

within

the

EIM

domain

because

associated

user

IDs

cannot

be

unique

across

multiple

registries.

If

you

have

previously

populated

your

EIM

domain

with

unique

identifiers,

the

unique

identifiers

for

which

you

are

adding

associations

or

attributes

in

your

input

records

should

match

these

unique

identifiers.

After

you

sort

the

records

by

the

unique

identifier

fields,

check

the

results

to

verify

that

non-blank

values

appear

in

this

field

for

each

record

and

that

the

values

are

not

duplicated

(unless

this

is

intentional).

The

eimadmin

utility

generates

an

error

each

time

it

tries

to

add

an

object

that

has

been

previously

defined.

Input

file

contents

The

file

can

include:

v

Comments;

to

include

a

comment

line,

use

″#″

as

the

first

non-blank

character

in

the

line.

Note:

The

eimadmin

utility

ignores

blank

lines

and

comment

lines.

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

89

|

|

|

v

Upper

and

lower

case

(The

eimadmin

utility

preserves

lettercase.)

v

Blanks

(Whitespace

is

any

combination

of

blanks,

tabs,

and

other

’invisible’

control

characters.

Note:

Avoid

using

whitespace

characters

other

than

blanks

because

the

eimadmin

utility

does

not

consider

them

when

it

performs

positional

parsing.

The

eimadmin

utility

truncates

leading

and

trailing

whitespace

within

fields

when

it

is

parsing

input

values.

The

eimadmin

utility

does

not

process

anything

in

a

field

that

contains

all

whitespace.)

Table

24.

Hexadecimal

character

values

for

invisible

control

characters

EBCIDIC

Hexadecimal

value

Description

05

HT

—

tab

0B

VT

—

vertical

tab

0C

FF

—

form

feed

0D

CR

—

carriage

return

The

label

line

The

first

non-blank,

non-comment

line

in

the

input

file

must

be

the

label

line.

This

consists

of

one

or

more

labels

that

identify

starting

and

ending

positions

for

column-delimited

fields

in

subsequent

lines.

For

details

about

names

of

labels,

see

Table

25

on

page

91.

Example:

Suppose

you

want

to

input

employee

records

of

last

name,

first

name,

and

employee

number.

Your

data

might

look

like

the

information

in

the

following

grid.

(The

top

line

of

the

grid

is

not

part

of

the

data

and

is

there

simply

to

show

column

numbers):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0

0

0

1

1

0

0

0

B

l

a

c

k

s

t

o

n

e

A

u

g

u

s

t

i

n

e

0

0

0

2

1

7

3

4

B

r

a

d

y

B

a

r

b

a

r

a

0

0

0

3

1

1

2

4

L

l

o

y

d

C

a

r

o

l

0

0

0

4

1

7

4

5

M

a

r

t

i

n

s

o

n

D

e

b

b

i

e

(The

record

is

30

characters

long.

The

first

four

slots

are

a

four-digit

sequence

number

followed

by

a

blank.

The

employee

numbers

start

in

column

6

and

end

in

column

10.

The

last

names

start

in

column

11

and

end

in

column

20.

The

first

names

start

in

column

22

and

end

in

column

30.)

Your

label

line

would

look

like

the

following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

I

U

;

U

N

;

I

N

;

The

labels

in

the

preceding

label

line

are:

v

″IU″

represents

a

unique

identifier

(employee

number)

v

″UN″

represents

the

registry

user

name

(last

name)

The

eimadmin

utility

90

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|

v

″IN″

represents

a

non-unique

identifier

(first

name)

These

labels

mark

the

starting

positions

of

the

fields

for

employee

number,

last

name,

and

first

name.

The

semicolons

mark

the

ending

positions

for

these

fields.

See

“Example

for

adding

a

list

of

identifiers

to

an

EIM

domain”

on

page

92

for

a

more

complex

example.

Now

that

you

have

seen

an

example

of

a

few

of

the

labels,

it

is

time

to

look

at

a

comprehensive

list

of

the

labels.

The

following

table

summarizes

the

labels

associated

with

object

types

and

command

line

options

associated

with

these

labels.

Table

25.

Summary

of

associated

labels

Object

Types

Associated

Labels

Command

Line

Options

Descriptions

Domain

DN

-d

Domain

distinguished

name

DD

-n

Domain

description

Registry

RN

-r

Registry

name

RT

-y

Registry

type

RP

-g

Parent

system

registry

RU

-k

Universal

resource

identifier

RD

-n

Registry

description

RA

-x

Registry

alias

(multi-value)

RZ

-z

Registry

alias

type

Identifier

IU

-i

Unique

identifier

IN

-j

Non-unique

identifier

(multi-value)

ID

-n

Identifier

description

II

-o

Identifier

information

(multi-value)

Association

IU

-i

Unique

identifier

RN

-r

Registry

name

UN

-u

Registry

user

name

UT

-t

Association

type

(multi-value)

UD

-n

User

description

UI

-o

User

information

(multi-value)

Access

authority

CT

-c

Access

authority

type

CU

-q

Access

user

distinguished

name

CS

-f

Access

user

type

RN

-r

Registry

name

Rules:

Here

are

the

rules

for

creating

a

label

line:

v

Indicate

the

start

of

each

field

by

putting

a

label

(from

column

two

of

Table

25)

in

the

starting

column

position.

Indicate

the

end

of

each

field

by

putting

a

semicolon

in

the

ending

column

position.

v

Separate

labels

and

semicolons

with

zero

or

more

blanks.

(Do

not

use

other

white-space

characters,

such

as

tabs,

because

eimadmin

interprets

them

as

single

blank

characters,

so

a

record

that

visually

appears

to

have

correct

column

positioning

might

be

incorrect

for

processing.)

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

91

|

v

You

can

specify

multi-value

labels

more

than

once;

for

a

multi-value

label,

each

value

is

considered

for

processing.

If

you

specify

more

than

one

value

for

a

single-value

label,

eimadmin

processes

only

the

first

value

you

specify.

(See

the

Description

column

of

Table

25

on

page

91

for

information

about

which

labels

are

multi-value.)

Processing

differences

between

command-line

options

and

input

files

If

you

specify

information

both

as

command-line

options

and

with

an

input

file,

command-line

values

have

priority

over

input

file

values.

As

previously

discussed,

a

single-value

option

can

have

only

one

value.

If

you

specify

more

than

one

value,

eimadmin

processes

only

the

first

value.

A

multi-value

option

can

have

more

than

one

value.

If

you

specify

more

than

one

value,

eimadmin

processes

all

of

these

values.

If

you

specify

information

for

a

single-value

option

both

within

a

command

and

in

an

input

file,

eimadmin

processes

the

information

on

the

command

rather

than

that

in

the

file.

(This

is

assuming

the

value

is

relevant

to

the

object

type

and

action

combination

that

you

specify.)

Note:

However,

if

you

specify

information

for

a

multi-value

option

both

in

a

command

and

in

a

file,

eimadmin

processes

all

the

values,

processing

those

in

the

command

first.

The

eimadmin

utility

ignores

command

line

options

or

input

file

labels

that

are

not

appropriate

for

the

object

type

and

action

combination

that

you

specify.

The

output

file

The

eimadmin

utility

generates

messages

to

stdout

to

indicate

the

following:

v

The

eimadmin

utility

version

the

date

and

start

time,

and

command

options

and

parameters

(as

shown

in

the

following

example

line.

See

Step

3

on

page

93

for

the

full

example)

ITY4020

eimadmin

(v1)

started

Mon

May

20

10:50:58

2002

with

options

eimadmin

-lI

v

If

called

to

list

objects

or

attributes,

the

requested

information

retrieved

from

the

EIM

domain

v

Whether

processing

ended

normally

or

stopped

due

to

error

v

A

summary

of

processed

records

(successful

and

unsuccessful)

The

error

file

If

any

errors

occur

during

processing,

the

eimadmin

utility

generates

error

messages

to

stderr.

Failing

records

are

echoed

to

the

output

in

their

entirety.

You

can

correct

the

failing

records

and

rerun

them

through

the

utility.

See

page

Chapter

10,

“EIM

header

file

and

example,”

on

page

271

for

a

sample

error

file.

Example

for

adding

a

list

of

identifiers

to

an

EIM

domain

1.

Create

a

file

named

’employees.txt’

containing

identity

information

in

a

format

similar

to

the

following:

#

Sample

eimadmin

input

file

#

#

User

id

Birth

Type

Created

First

Nickname

Full

Dept

Hire

Empl

#

date

by

name

name

date

num

#

UN

;UI

;

UD

;UI

;

IN

;

IN

;IU

;

II

;

II

;

ID

;

021P

SMITH

1959-08-01

TSO

ADMIN1

NO

NO

Joseph

Joe

J.C.Smith

DEPTD01

14:20:16

1990-04-11

004321

022P

JONES

1968-05-03

TSO

ADMIN1

NO

NO

Robert

Bob

R.Z.Jones

DEPTD01

16:01:57

1988-02-16

001234

023F

JONES2

1965-10-15

BATCH

ADMIN4

NO

NO

Robert

R.Z.Jones

DEPTD01

14:12:20

1988-02-16

001234

The

eimadmin

utility

92

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|

024P

SMITH

1973-11-26

ADMIN3

NO

NO

Joseph

Joe

J.Smith

1990-04-11

004321

025F

BROWN

1970-04-11

TSO

ADMIN3

NO

NO

Charles

Chuck

DEPTD01

09:47:57

1995-01-10

003210

#

The

following

entry

was

added

manually

11/08/01

by

ADMINX

026P

ADMINX

James

Jim

J.Z.Clark

D03

2001-12-22

000012

Notes:

1.

The

exported

database

can

contain

information

that

the

eimadmin

utility

does

not

use.

The

two

columns

with

″NO″

and

the

column

with

times

between

the

two

II

values

are

such

information.

2.

There

can

be

only

one

UN

(registry

user

name),

UD

(user

description),

IU

(unique

identifier),

and

ID

(identifier

description).

3.

There

can

be

multiple

values

for

UI,

IN,

and

II

(user

information,

non-unique

identifier,

and

identifier

information,

respectively).

2.

Add

the

identifiers

by

using

the

following

eimadmin

command:

eimadmin

-aI

-h

ldap://my.server

-b

"cn=EIM

admin,o=My

Company,

c=US"

-d

"ibm-eimDomainName=My

Employees,o=My

Company,

c=US"

<

employees.txt

>

addemployees.out

2>

addemployees.err

Note:

Since

the

-w

flag

was

omitted,

the

issuer

of

the

eimadmin

command

is

prompted

for

the

password.
If

the

unique

identifiers

were

not

previously

defined,

the

output

file

is

the

following:

ITY4020

eimadmin

(v1)

started

Mon

May

20

10:50:58

2002

eimadmin

-aI

-h

ldap://my.server

-b

"cn=EIM

admin,o=My

Company,

c=US"

-d

"ibm-eimDomainName=My

Employees,o=My

Company,

c=US"

ITY4022

6

records

processed

--

4

successful;

2

failed.

ITY4021

Processing

ended

normally.

The

error

file

addemployees.err

contains

the

following:

ITY4030

Service

eimAddIdentifier()

returned

error

117

--

ITY0019

EIM

identifier

already

exists

by

this

name.

ITY4028

Error

occurred

while

processing

input

line

9.

023F

JONES2

1985-10-15

BATCH

ADMIN4

NO

NO

Robert

R.Z.Jones

DEPTD01

14:12:20

1988-02-16

001234

ITY4012

Unique

identifier

not

specified.

ITY4028

Error

occurred

while

processing

input

line

11.

025F

BROWN

1990-04-11

TSO

ADMIN3

NO

NO

Charles

Chuck

DEPTD01

09:47:57

1995-01-10

003210

3.

List

the

identifiers

using

the

same

input

file

by

entering

the

following

command:

eimadmin

-lI

-h

ldap://my.server

-b

"cn=EIM

admin,o=My

Company,

c=US"

-d

"ibm-eimDomainName=My

Employees,o=My

Company,

c=US"

<

employees.txt

>

listids.out

2>

listids.err

The

file

listids.out

contains

output

such

as

the

following:

ITY4020

eimadmin

(v1)

started

2001/10/30

at

15:09:00

with

options

eimadmin

-lI

-hldap://my.server

-b

"cn=EIM

admin,o=My

Company,

c=US"

-d

"ibm-eimDomainName=My

Employees,o=My

Company,

c=US"

unique

identifier:

J.C.Smith

other

identifier:

J.C.Smith

other

identifier:

Joseph

other

identifier:

Joe

The

eimadmin

utility

Chapter

8.

The

eimadmin

utility

93

description:

004321

information:

D01

information:

1990-04-11

unique

identifier:

R.Z.Jones

other

identifier:

R.Z.Jones

other

identifier:

Robert

other

identifier:

Bob

description:

001234

information:

D01

information:

1988-02-16

unique

identifier:

R.Z.Jones

other

identifier:

R.Z.Jones

other

identifier:

Robert

other

identifier:

Bob

description:

001234

information:

D01

information:

1988-02-16

unique

identifier:

J.Smith

other

identifier:

J.Smith

other

identifier:

Joseph

other

identifier:

Joe

description:

004321

information:

1990-04-11

unique

identifier:

J.Z.W.Clark

other

identifier:

J.Z.W.Clark

other

identifier:

James

other

identifier:

Jim

description:

000012

information:

D03

information:

2001-12-22

.

.

.

ITY4022

6

records

processed

--

6

successful;

0

failed.

ITY4021

Processing

ended

normally.

While

a

unique

identifier

is

required

for

the

add

action,

the

eimadmin

list

action

accepts

a

non-unique

identifier

when

a

unique

identifier

is

not

provided.

The

utility

searches

for

entries

with

the

non-unique

identifier

’Charles’,

the

first

non-unique

identifier

that

appears

in

the

data

line.

No

list

output

is

returned

for

this

line

because

no

matches

are

found

in

the

domain.

Notes:

1.

Notice

that

the

entry

for

’R.Z.Jones’

is

duplicated

in

the

list

output.

This

occurs

because

there

are

two

data

lines

with

the

same

unique

identifier.

The

utility

processes

each

line

separately,

in

order

of

appearence,

without

recognizing

similarities

between

them.

2.

Also

notice

within

each

identifier

entry

that

a

non-unique

value

(″other

identifier″)

duplicates

the

unique

identifier

value.

This

is

the

manner

in

which

the

information

is

stored

in

LDAP.

Do

not

attempt

to

remove

the

duplicate

value.

The

eimadmin

utility

94

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

|

|
|
|
|

|
|
|
|

Chapter

9.

EIM

APIs

Programming

Interface

information

The

EIM

APIs

are

a

programming

Interface.

They

are

intended

for

customers

to

use

in

customer-written

programs.

End

of

Programming

Interface

information

This

chapter

provides

information

about

EIM

APIs,

which

are

in

alphabetical

order.

Before

the

APIs

themselves,

two

preliminary

sections

identify

the

authority

to

use

the

APIs

and

describe

the

EIM

return

code

parameter,

EimRC.

Authority

to

use

APIs

To

use

most

of

the

APIs,

you

must

meet

one

of

the

following:

v

Be

an

LDAP

administrator

v

Belong

to

an

EIM-defined

LDAP

access

control

group

Different

access

groups

can

update

or

view

different

portions

of

the

EIM

domain

and,

therefore,

have

the

authority

to

use

different

APIs.

For

information

on

access

authories,

refer

to

“Authorities”

on

page

17.

The

following

APIs

do

not

require

the

user

to

have

an

EIM

authority:

v

eimSetConfiguration

v

eimRetrieveConfiguration

v

eimCreateHandle

v

eimDestroyHandle

v

eimSetAttribute

v

eimGetAttribute

v

eimConnect

v

eimConnectToMaster

EimRC

--

EIM

return

code

parameter

All

EIM

APIs

return

an

errno.

If

the

EimRC

parameter

is

not

NULL,

this

EIM

return

code

structure

contains

additional

information

about

the

error

that

was

returned.

You

can

use

this

to

get

a

text

description

of

the

error.

The

layout

for

EimRC

follows:

typedef

struct

EimRC

{

unsigned

int

memoryProvidedByCaller;

/*

Input:

Size

of

the

entire

RC

structure.

This

is

filled

in

by

the

caller.

This

is

used

to

tell

the

API

how

much

space

was

provided

for

substitution

text

*/

unsigned

int

memoryRequiredToReturnData;

/*

Output:

Filled

in

by

API

to

tell

caller

how

much

data

could

have

been

returned.

Caller

can

then

determine

if

the

caller

provided

enough

space

(i.e.

if

the

entire

substitution

string

was

able

to

be

copied

to

this

structure.

*/

int

returnCode;

/*

Same

as

the

errno

returned

as

the

rc

for

the

API

*/

©

Copyright

IBM

Corp.

2004

95

|

int

messageCatalogSetNbr;

/*

Message

catalog

set

number

*/

int

messageCatalogMessageID;

/*

Message

catalog

message

id

*/

int

ldapError;

/*

ldap

error,

if

available

*/

int

sslError;

/*

ssl

error,

if

available

*/

char

reserved[16];

/*

Reserved

for

future

use

*/

unsigned

int

substitutionTextLength;

/*

Length

of

substitution

text

excluding

a

null-terminator

which

may

or

may

not

be

present

*/

char

substitutionText[1];

/*

further

info

describing

the

error.

*/

}

EimRC;

Field

descriptions

memoryProvidedByCaller

(Input)

The

number

of

bytes

the

calling

application

provides

for

the

error

code.

The

number

of

bytes

provided

must

be

at

least

48.

memoryRequiredToReturnData

(Output)

The

length

of

the

error

informational

message,

in

bytes,

that

is

necessary

for

the

API

to

return.

If

this

is

0,

no

error

was

detected

and

none

of

the

fields

that

follow

this

field

in

the

structure

are

changed.

returnCode

(Output)

The

errno

returned

for

this

API.

This

is

the

same

as

the

return

value

for

each

API.

messageCatalogSetNbr

(Output)

The

message

set

number

for

the

EIM

catalog.

You

can

use

this

with

the

messageCatalogID

to

get

the

error

message

text.

messageCatalogMessageID

(Output)

The

message

ID

number

for

the

EIM

catalog.

You

can

use

this

with

the

messageCatalogSetNbr

to

get

the

error

message

text.

ldapError

(Output)

An

error

code

returned

by

an

LDAP

client

API.

The

interpretation

of

the

error

code

is

in

the

substitution

text.

sslError

(Output)

An

error

code

returned

by

an

LDAP

client

API.

If

not

zero,

this

value

will

be

displayed

in

the

substitution

text

as

the

SSL

reason

code.

Refer

to

the

ldapssl.h

header

file

in

the

LDAP

Client

API

document

for

further

information.

reserved

(Output)

Reserved

for

future

use.

substitutionTextLength

(Output)

EimRC

--

EIM

return

code

parameter

96

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|
|

|
|

|
|

|
|

|
|
|

This

field

is

set

if

any

substitution

text

is

returned.

If

there

is

no

substitution

text,

this

field

is

zero.

substitutionText

(Output)

Message

substitution

text.

EimRC

--

EIM

return

code

parameter

Chapter

9.

EIM

APIs

97

eimAddAccess

Purpose

Adds

the

user

to

an

EIM

access

group

identified

by

the

access

type.

Format

#include

<eim.h>

int

eimAddAccess(EimHandle

*

eim,

EimAccessUser

*

accessUser,

enum

EimAccessType

accessType,

char

*

registryName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

accessUser

(Input)

A

structure

that

contains

the

name

of

the

user

requiring

access.

The

user

name

can

be:

v

A

distinguished

name

v

A

Kerberos

Principal

EIM_ACCESS_DN

Indicates

a

distinguished

name

defined

in

an

LDAP

directory

that

you

can

use

to

bind

to

the

EIM

domain.

EIM_ACCESS_LOCAL_USER

(z/OS

does

not

support

this.

Use

EIM_ACCESS_DN

instead.)

It

indicates

a

local

user

name

on

the

system

where

the

API

runs.

The

local

user

name

is

converted

to

the

appropriate

access

ID

for

this

system.

EIM_ACCESS_KERBEROS

Indicates

a

Kerberos

identity,

which

is

converted

to

the

appropriate

access

ID.

For

example,

petejones@therealm

is

converted

to

ibm-kn=petejones@threalm.

The

EimAccessUser

structure

layout

follows:

enum

EimAccessUserType

{

EIM_ACCESS_DN,

EIM_ACCESS_KERBEROS,

EIM_ACCESS_LOCAL_USER

};

typedef

struct

EimAccessUser

{

union

{

char

*dn;

char

*kerberosPrincipal;

char

*localUser;

}user;

enum

EimAccessUserType

userType;

}EimAccessUser;

eimAddAccess

98

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

accessType

(Input)

The

type

of

access

to

add.

Valid

values

are:

EIM_ACCESS_ADMIN

(0)

Administrative

authority

to

the

entire

EIM

domain.

EIM_ACCESS_REG_ADMIN

(1)

Administrative

authority

to

all

registries

in

the

EIM

domain.

EIM_ACCESS_REGISTRY

(2)

Administrative

authority

to

the

registry

specified

in

the

registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN

(3)

Administrative

authority

to

all

of

the

identifiers

in

the

EIM

domain.

EIM_ACCESS_MAPPING_LOOKUP

(4)

Authority

to

perform

mapping

lookup

operations.

registryName

(Input)

The

name

of

the

registry

for

which

to

add

access.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

This

parameter

is

used

only

if

accessType

is

EIM_ACCESS_REGISTRY.

If

accessType

is

anything

other

than

EIM_ACCESS_REGISTRY,

this

parameter

must

be

NULL.

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimListAccess”

on

page

196

v

“eimListUserAccess”

on

page

239

v

“eimQueryAccess”

on

page

246

v

“eimRemoveAccess”

on

page

250

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

eimAddAccess

Chapter

9.

EIM

APIs

99

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ACCESS_TYPE_INVAL

(2)

Access

type

is

not

valid.

EIMERR_ACCESS_USERTYPE_INVAL

(3)

Access

user

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_REG_MUST_BE_NULL

(55)

Registry

name

must

be

NULL

when

access

type

is

not

EIM_ACCESS_REGISTRY.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

%s

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

illustrates

adding

the

distinguished

name

of

a

user

to

the

EIM

Administrator

access

group.

#include

<eim.h>

.

eimAddAccess

100

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimAccessUser

user;

.

.

.

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Set

up

access

user

information

*/

user.userType

=

EIM_ACCESS_DN;

user.user.dn="cn=pete,o=ibm,c=us";

/*

Add

access

for

this

user.

*/

rc

=

eimAddAccess(&handle,

&user,

EIM_ACCESS_ADMIN,

NULL,

err);

.

.

.

eimAddAccess

Chapter

9.

EIM

APIs

101

eimAddApplicationRegistry

Purpose

Adds

an

application

registry

to

the

EIM

domain.

An

application

registry

contains

a

subset

of

a

system

registry’s

user

IDs.

Format

#include

<eim.h>

int

eimAddApplicationRegistry(EimHandle

*

eim,

char

*

registryName,

char

*

registryType,

char

*

description,

char

*

systemRegistryName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

for

this

application

registry.

This

name

cannot

have

a

NULL

value

and

must

be

unique

within

the

EIM

domain.

The

uniqueness

of

the

registry

name

is

for

the

domain

and

not

for

the

system

registry

that

the

application

registry

belongs

to.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names.

,

=

+

<

>

#

;

\

*

registryType

(Input)

A

string

form

of

an

OID

that

represents

the

registry

type

and

a

user

name

normalization

method.

The

normalization

method

is

necessary

because

some

registries

are

case-independent,

and

others

are

case-dependent.

EIM

uses

this

information

to

make

sure

the

appropriate

search

occurs.

When

a

registry

is

case-independent,

registry

user

names

are

converted

to

uppercase.

See

84

for

a

list

of

predefined

types

and

also

look

at

the

eim.h

sample

(see

“eim.h”

on

page

271).

Users

can

define

their

own

registry

types.

See

“EIM

registry

definition”

on

page

10

for

details.

description

(Input)

The

description

for

this

new

application

registry.

This

parameter

can

be

NULL.

systemRegistryName

(Input)

The

name

of

the

system

registry

of

which

this

application

registry

is

a

subset.

This

parameter

can

be

NULL.

The

following

special

characters

are

not

allowed

in

registry

names.

,

=

+

<

>

#

;

\

*

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

eimAddApplicationRegistry

102

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Related

Information

See

also

the

following:

v

“eimAddSystemRegistry”

on

page

115

v

“eimChangeRegistry”

on

page

128

v

“eimListRegistries”

on

page

221

v

“eimRemoveRegistry”

on

page

262

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EEXIST

EIM

registry

entry

already

exists.

EIMERR_REGISTRY_EXISTS

(37)

The

registry

entry

already

exists

within

the

particular

domain

in

question.

eimAddApplicationRegistry

Chapter

9.

EIM

APIs

103

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_CHAR_INVAL

(21)

A

restricted

character

was

used

in

the

object

name.

Check

the

API

documentation

for

a

list

of

restricted

characters.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOENT

System

registry

not

found.

EIMERR_NO_SYSREG

(33)

System

registry

not

found.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

This

LDAP

connection

has

″read-only″

access.

A

connection

to

the

master

LDAP

server

with

read/write

is

required

to

complete

the

operation.

Use

the

eimConnectToMaster

API

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

creating

a

new

EIM

application

registry:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Add

new

application

registry

*/

rc

=

eimAddApplicationRegistry(&handle,

"MyAppRegistry",

EIM_REGTYPE_OS400,

"For

App

applications",

"MyRegistry",

eimAddApplicationRegistry

104

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

err);

.

.

.

eimAddApplicationRegistry

Chapter

9.

EIM

APIs

105

eimAddAssociation

Purpose

Associates

a

local

identity

in

a

specified

user

registry

with

an

EIM

identifier.

EIM

supports

three

kinds

of

associations:

v

Source

v

Target

v

Administrative.

(See

page

“EIM

associations”

on

page

13

for

more

information

about

these

kinds

of

associations.)

All

EIM

associations

are

between

an

EIM

identifier

and

a

local

user

identity.

(An

association

is

never

directly

between

local

user

identities.)

For

an

EIM

identifier

to

be

useful

in

mapping

lookup

operations,

it

must

have

at

least

one

″source″

or

at

least

one

″target″

association.

Associated

source

identities

are

user

identities

that

are

primarily

for

authentication

purposes.

You

can

use

an

associated

source

identity

as

the

source

identity

of

a

mapping

lookup

operation

(that

is,

with

eimGetTargetFromSource),

but

you

cannot

find

an

associated

source

identity

by

making

it

the

target

of

a

mapping

lookup

operation.

Associated

target

identities

are

user

identities

that

are

primarily

used

to

secure

existing

data.

You

can

find

an

associated

target

identity

as

the

result

of

a

mapping

lookup

operation,

but

you

cannot

use

an

associated

target

identity

as

the

source

identity

for

a

mapping

lookup

operation.

Administrative

associations

are

used

to

show

that

an

identity

is

associated

with

an

EIM

identifier.

You

cannot

use

an

administrative

association

as

the

source

or

target

of

a

mapping

lookup

operation.

You

can

use

a

single

user

identity

as

both

a

target

and

a

source.

You

do

this

by

creating

both

a

source

and

a

target

association

for

the

local

user

identity

with

the

appropriate

EIM

identifier.

Although

this

API

supports

an

association

type

of

EIM_SOURCE_AND_TARGET,

it

actually

creates

two

associations.

Format

#include

<eim.h>

int

eimAddAssociation(EimHandle

*

eim,

enum

EimAssociationType

associationType,

EimIdentifierInfo

*

idName,

char

*

registryName,

char

*

registryUserName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

associationType

(Input)

The

type

of

association

to

add.

Valid

values

are:

eimAddAssociation

106

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

EIM_TARGET

(1)

Add

a

target

association.

EIM_SOURCE

(2)

Add

a

source

association.

EIM_SOURCE_AND_TARGET

(3)

Add

both

a

source

association

and

a

target

association.

EIM_ADMIN

(4)

Add

an

administrative

association.

idName

(Input)

A

structure

that

contains

the

identifier

name

for

this

association.

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

EIM_UNIQUE_NAME

finds

at

most

one

matching

identifier.

EIM_NAME

results

in

an

error

if

your

EIM

domain

has

more

than

one

identifier

containing

the

same

name.

registryName

(Input)

The

registry

name

for

the

association.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

registryUserName

(Input)

The

registry

user

name

for

the

association.

The

API

normalizes

the

retistry

user

name,

according

to

the

normalization

method

for

the

defined

registry.

The

registry

user

name

should

begin

with

a

non-blank

character.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

eimrc

is

set

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimGetAssociatedIdentifiers”

on

page

168

v

“eimListAssociations”

on

page

201

v

“eimRemoveAssociation”

on

page

254

eimAddAssociation

Chapter

9.

EIM

APIs

107

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

authority

that

the

access

group

has

to

the

EIM

data

depends

on

the

type

of

association

being

added.

For

administrative

and

source

associations,

the

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

identifiers

administrator

For

target

associations,

the

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

registry

X

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

or

identifier

name

is

not

valid

or

insufficient

access

to

EIM

data.

EIMERR_IDNAME_AMBIGUOUS

(20)

More

than

one

EIM

identifier

was

found

that

matches

the

requested

identifier

name.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimAddAssociation

108

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_ASSOC_TYPE_INVAL

(4)

Association

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EMVSERR

An

MVS

environment

or

internal

error

has

occurred.

EIMERR_ZOS_DATA_CONVERSION

(6013)

Error

occurred

when

converting

data

between

code

pages.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

adding

an

administrative,

source,

and

target

association

for

the

same

identifier:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimIdentifierInfo

x;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

eimAddAssociation

Chapter

9.

EIM

APIs

109

.

/*

Set

up

identifier

information

*/

x.idtype

=

EIM_UNIQUE_NAME;

x.id.uniqueName

=

"mjones";

/*

Add

an

admin

association

*/

rc

=

eimAddAssociation(&handle,

EIM_ADMIN,

&x,

"MyRegistry",

"maryjones",

Err);

.

.

.

/*

Add

a

source

association

*/

rc

=

eimAddAssociation(&handle,

EIM_SOURCE,

&x,

"kerberosRegistry",

"mjjones",

Err);

.

.

.

/*

Add

a

target

association

*/

rc

=

eimAddAssociation(&handle,

EIM_TARGET,

&x,

"MyRegistry",

"maryjo",

Err);

.

.

.

eimAddAssociation

110

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimAddIdentifier

Purpose

Creates

an

identifier

in

EIM

related

to

a

specific

person

or

entity

within

an

enterprise.

This

identifier

is

used

to

manage

information

and

identify

relationships

for

a

specific

user

or

identity.

Format

#include

<eim.h>

int

eimAddIdentifier

(EimHandle

*

eim,

char

*

name,

enum

EimIdAction

nameInUseAction,

unsigned

int

*

sizeOfUniqueName,

char

*

uniqueName,

char

*

description,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

name

(Input)

A

name

to

use

for

this

identifier.

The

following

characters

are

special

characters

that

are

not

allowed

in

the

identifier

name.

,

=

+

<

>

#

;

\

*

nameInUseAction

(Input)

The

name

for

the

new

identifier

must

be

unique.

This

value

indicates

the

action

to

take

if

the

provided

name

is

already

in

use.

Possible

values

are:

EIM_FAIL

(0)

Do

not

generate

a

unique

name;

return

an

error.

EIM_GEN_UNIQUE

(1)

Generate

a

unique

name.

sizeOfUniqueName

(Input/Output)

The

size

of

the

field

in

which

to

return

the

unique

name.

EIM

ignores

this

parameter

if

nameInUseAction

is

EIM_FAIL.

At

input

this

parameter

is

the

size

the

caller

provides.

On

output

it

contains

the

actual

size

returned.

This

value

should

be

the

size

of

the

name

parameter

plus

an

additional

20

bytes.

uniqueName

(Output)

The

space

in

which

to

return

the

unique

identifier

for

this

new

EIM

identifier.

EIM

ignores

this

parameter

if

nameInUseAction

is

EIM_FAIL.

description

(Input)

Description

for

the

new

EIM

identifier.

This

parameter

can

be

NULL.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

eimAddIdentifier

Chapter

9.

EIM

APIs

111

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimChangeIdentifier”

on

page

124

v

“eimGetAssociatedIdentifiers”

on

page

168

v

“eimListIdentifiers”

on

page

214

v

“eimRemoveIdentifier”

on

page

259

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

identifiers

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EEXIST

Identifier

already

exists.

EIMERR_IDENTIFIER_EXISTS

(19)

EIM

Identifier

already

exists

by

this

name.

eimAddIdentifier

112

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_CHAR_INVAL

(21)

A

restricted

character

was

used

in

the

object

name.

Check

the

API

for

a

list

of

restricted

characters.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDACTION_INVAL

(18)

Name

in

use

action

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_UNIQUE_SIZE

(43)

Length

of

unique

name

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

adding

an

EIM

identifier:

#include

<eim.h>

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

char

unique[30];

unsigned

int

sizeOfUnique

=

30;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Add

new

identifier

of

Mary

Smith

*/

rc

=

eimAddIdentifier(&handle,

"Mary

Smith",

EIM_GEN_UNIQUE,

&sizeOfUnique,

unique,

"The

coolest

person",

eimAddIdentifier

Chapter

9.

EIM

APIs

113

Err);

.

.

.

eimAddIdentifier

114

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimAddSystemRegistry

Purpose

Adds

a

system

registry

to

the

EIM

domain.

After

you

add

it,

this

registry

participates

in

the

EIM

domain.

You

can

make

mapping

associations

only

with

identities

in

registries

that

are

currently

participating

in

the

EIM

domain.

Format

#include

<eim.h>

int

eimAddSystemRegistry(EimHandle

*

eim,

char

*

registryName,

char

*

registryType,

char

*

description,

char

*

URI,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

for

this

system

registry.

This

name

cannot

have

a

NULL

value

and

must

be

unique

within

the

EIM

domain.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names.

,

=

+

<

>

#

;

\

*

registryType

(Input)

A

string

form

of

an

OID

that

represents

the

registry

type

and

a

user

name

normalization

method.

The

normalization

method

is

necessary

because

some

registries

are

case-independent

and

others

are

case-dependent.

EIM

uses

this

information

to

make

sure

the

appropriate

search

occurs.

When

a

registry

is

case-independent,

registry

user

names

are

converted

to

uppercase.

The

following

are

possible

registry

types:

v

EIM_REGTYPE_RACF

v

EIM_REGTYPE_OS400

v

EIM_REGTYPE_KERBEROS_EX

v

EIM_REGTYPE_KERBEROS_IG

v

EIM_REGTYPE_AIX

v

EIM_REGTYPE_NDS

v

EIM_REGTYPE_LDAP

v

EIM_REGTYPE_POLICY_DIRECTOR

v

EIM_REGTYPE_WIN2K

description

(Input)

The

description

for

this

new

system

registry

entry.

This

parameter

can

be

NULL.

URI

(Input)

The

LDAP

URI

(Universal

Resource

Identifier)

for

this

registry,

if

available.

eimAddSystemRegistry

Chapter

9.

EIM

APIs

115

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

If

the

system

registry

is

accessable

through

LDAP,

then

for

documentation

purposes

you

can

set

the

URI

with

the

URL

for

the

system

registry.

Example:

If

the

following

three

premises

are

true:

v

The

LDAP

server

is

running

on

z/OS

with

the

host

name

some.ldap.host

v

The

LDAP

server

is

listening

on

port

389

v

The

LDAP

server

is

configured

with

the

RACF

SDBM

and

has

the

suffix

cn=RACFA,o=ibm,c=us

Then

the

URI

could

be

set

to

the

following:

ldap://some.ldap.host:389/profileType=User,cn=RACFA,o=ibm,c=us

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddApplicationRegistry”

on

page

102

v

“eimChangeRegistry”

on

page

128

v

“eimListRegistries”

on

page

221

v

“eimRemoveRegistry”

on

page

262

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

eimAddSystemRegistry

116

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EEXIST

EIM

registry

entry

already

exists.

EIMERR_REGISTRY_EXISTS

(37)

The

registry

entry

already

exists

within

the

particular

domain.

EINVAL

Input

parameter

was

not

valid.

EIMERR_CHAR_INVAL

(21)

A

restricted

character

was

used

in

the

object

name.

Check

the

API

for

a

list

of

restricted

characters.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EROFS

The

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

This

connection

has

″read-only″

access.

A

connection

to

the

master

LDAP

server

with

read/write

is

required

to

complete

this

operation.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

creating

a

new

EIM

system

registry:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

eimAddSystemRegistry

Chapter

9.

EIM

APIs

117

.

.

/*

Add

new

system

registry

*/

rc

=

eimAddSystemRegistry(&handle,

"MyRegistry",

EIM_REGTYPE_OS400,

"The

first

registry",

NULL,

/*

No

URI

specified

for

this

registry

*/

err);

.

.

.

eimAddSystemRegistry

118

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimChangeDomain

Purpose

Changes

an

attribute

for

the

EIM

domain

entry.

Format

#include

<eim.h>

int

eimChangeDomain(char

*

ldapURL,

EimConnectInfo

connectInfo,

enum

EimDomainAttr

attrName,

char

*

attrValue,

enum

EimChangeType

changeType,

EimRC

*

eimrc)

Parameters

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

host

information.

This

parameter

is

required.

This

URL

has

the

following

format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.

If

not

specified,

the

default

LDAP

or

LDAPS

ports

will

be

used.)

dn

Distinguished

name

of

the

domain

to

change.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

connectInfo

(Input)

Connect

information.

This

parameter

provides

the

information

required

to

bind

to

LDAP.

If

the

system

is

configured

to

connect

to

a

secure

port,

EimSSLInfo

is

required.

For

the

EIM_SIMPLE

connect

type,

the

creds

field

should

contain

the

EimSimpleConnectInfo

structure

with

a

binddn

and

password.

EimPasswordProtect

determines

the

level

of

password

protection

on

the

LDAP

bind.

EIM_PROTECT_NO

(0)

The

clear-text

password

is

sent

on

the

bind.

EIM_PROTECT_CRAM_MD5

(1)

The

protected

password

is

sent

on

the

bind.

The

server

side

must

support

cram-md5

protocol

to

send

the

protected

password.

EIM_PROTECT_CRAM_MD5_OPTIONAL

(2)

The

protected

password

is

sent

on

the

bind

if

eimChangeDomain

Chapter

9.

EIM

APIs

119

|
|

|

|

|

|
|
|
|

||

|

|
|

|
|

|
|

the

cram-md5

protocol

is

supported.

Otherwise,

the

clear-text

password

is

sent.

For

EIM_KERBEROS,

the

default

logon

credentials

are

used.

The

kerberos_creds

field

must

be

NULL.

For

EIM_CLIENT_AUTHENTICATION,

the

creds

field

is

ignored.

The

ssl

field

must

point

to

a

valid

EimSSLInfo

structure.

The

keyring

field

is

required

in

the

EimSSLInfo

structure.

It

can

be

the

name

of

a

System

SSL

key

database

file

or

a

RACF

keyring

name.

The

keyring_pw

field

is

required

when

the

keyring

is

the

name

of

a

System

SSL

key

database

field.

The

certificateLabel

field

is

optional.

If

it

is

NULL

the

default

certificate

in

the

keyring

is

used.

The

structure

layouts

follow:

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

attrName

(Input)

The

attribute

to

be

updated.

Valid

values

include:

EIM_DOMAIN_DESCRIPTION

(0)

Changes

the

description

for

the

EIM

domain.

Valid

changeType

is

EIM_CHG

(0).

attrValue

(Input)

The

new

value

for

the

attribute.

This

value

can

be

a

NULL

string

(for

example,

″″).

eimChangeDomain

120

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|

|
|
|
|
|
|

changeType

(Input)

The

type

of

change

to

make.

This

could

be

add,

remove,

or

change.

The

attrName

parameter

indicates

which

type

is

allowed

for

each

attribute.

Valid

values

include:

EIM_CHG

(0)

The

attribute

is

set

to

the

new

value.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

eimrc

is

set

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimCreateDomain”

on

page

151

v

“eimDeleteDomain”

on

page

159

v

“eimListDomains”

on

page

207

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NODOMAIN

(24)

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimChangeDomain

Chapter

9.

EIM

APIs

121

|
|
|

|
|

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_CONN_INVAL

(54)

Connection

type

is

not

valid.

EIMERR_NOT_SECURE

(32)

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PROTECT_INVAL

(22)

The

protect

parameter

in

EimSimpleConnectInfo

is

not

valid.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SSL_REQ

(42)

The

EIM

domain

controller

URL

begins

with

ldaps://,

but

the

SSL

information

was

not

specified

as

a

parameter

to

the

EIM

API.

EIMERR_URL_NODN

(45)

URL

has

no

DN

(required).

EIMERR_URL_NODOMAIN

(46)

URL

has

no

domain

(required).

EIMERR_URL_NOHOST

(47)

URL

does

not

have

a

host.

EIMERR_URL_NOTLDAP

(49)

URL

does

not

begin

with

ldap.

EIMERR_CREDS_MUST_BE_NULL

(58)

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTSUP

Connection

type

is

not

supported.

EIMERR_CONN_NOTSUPP

(12)

Connection

type

is

not

supported.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_URL_READ_ONLY

(50)

LDAP

connection

can

be

made

only

to

a

replica

LDAP

server.

Change

the

connection

information

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

changes

the

description

of

the

specified

EIM

domain:

#include

<eim.h>

#include

<stdio.h>

#include

<string.h>

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

eimChangeDomain

122

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
|
|

||
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

char

*

ldapURL

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

EimConnectInfo

con;

/*

Set

up

connection

information

*/

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Change

the

description

for

this

domain.

*/

if

(0

!=

(rc

=

eimChangeDomain(ldapURL,

con,

EIM_DOMAIN_DESCRIPTION,

"This

is

the

new

description",

EIM_CHG,

err)))

printf("Change

domain

error

=

%d",

rc);

return

0;

}

eimChangeDomain

Chapter

9.

EIM

APIs

123

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

eimChangeIdentifier

Purpose

Modifies

an

existing

EIM

identifier.

Format

#include

<eim.h>

int

eimChangeIdentifier(EimHandle

*

eim,

EimIdentifierInfo

*

idName,

enum

EimIdentifierAttr

attrName,

char

*

attrValue,

enum

EimChangeType

changeType,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

idName

(Input)

A

structure

that

contains

the

name

for

this

identifier.

The

following

special

characters

are

not

allowed

in

identifier

names.

,

=

+

<

>

#

;

\

*

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

EIM_UNIQUE_NAME

finds

at

most

one

matching

identifier.

EIM_NAME

results

in

an

error

if

your

EIM

domain

has

more

than

one

identifier

containing

the

same

name.

attrName

The

attribute

to

be

updated.

Valid

values

are:

EIM_IDENTIFIER_DESCRIPTION

(0)

Change

the

identifier

description.

Valid

changeType

is

EIM_CHG

(0).

EIM_IDENTIFIER_NAME

(1)

Add

or

remove

a

name

attribute

for

this

identifier.

Valid

changeType

can

be:

eimChangeIdentifier

124

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

v

EIM_ADD

(1)

v

EIM_RMV

(2)

EIM_IDENTIFIER_ADDL_INFO

(2)

Add

or

remove

an

additional

information

attribute

for

this

identifier.

Additional

information

is

user-defined

data.

Valid

changeType

can

be:

v

EIM_ADD

(1)

v

EIM_RMV

(2)

attrValue

(Input)

The

new

value

for

the

attribute.

This

value

can

be

a

NULL

string

(for

example,

″″).

changeType

(Input)

The

type

of

change

to

make.

On

z/OS,

this

can

be

one

of

the

following:

EIM_CHG

(0)

EIM

sets

the

attribute

to

the

new

value.

EIM

creates

the

attribute

if

it

does

not

already

exist.

EIM_ADD

(1)

EIM

adds

the

attribute

and

its

value

to

the

identifier.

EIM

creates

the

attribute

if

it

does

not

already

exist.

EIM_RMV

(2)

EIM

removes

the

given

attribute

value

from

the

attribute

in

the

identifier

entry.

EIM

removes

the

attribute

itself

from

the

entry

if

no

values

remain

for

the

attribute.

To

remove

the

entire

attribute,

use

NULL

for

the

attribute

value.

The

attrName

parameter

indicates

the

type

allowed

for

each

attribute.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddIdentifier”

on

page

111

v

“eimGetAssociatedIdentifiers”

on

page

168

v

“eimListIdentifiers”

on

page

214

v

“eimRemoveIdentifier”

on

page

259

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

identifiers

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

eimChangeIdentifier

Chapter

9.

EIM

APIs

125

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Identifier

name

is

not

valid

or

insufficient

access

to

EIM

data.

EIMERR_IDNAME_AMBIGUOUS

(20)

More

than

one

EIM

identifier

was

found

that

matches

the

requested

Identifier

name.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ATTR_INVAL

(5)

Attribute

name

is

not

valid.

EIMERR_CHGTYPE_INVAL

(9)

This

change

type

is

not

valid

with

the

requested

attribute.

Please

check

the

API

documentation.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

eimChangeIdentifier

126

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

changing

an

EIM

identifier

description:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimIdentifierInfo

idInfo;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Set

up

identifier

information

*/

idInfo.idtype

=

EIM_UNIQUE_NAME;

idInfo.id.uniqueName

=

"Mary

Smith";

/*

Change

the

description

of

the

identifier

*/

rc

=

eimChangeIdentifier(&handle,

&idInfo,

EIM_IDENTIFIER_DESCRIPTION,

"This

is

a

new

description",

EIM_CHG,

Err);

.

.

.

eimChangeIdentifier

Chapter

9.

EIM

APIs

127

eimChangeRegistry

Purpose

Changes

the

attribute

of

a

registry

participating

in

the

EIM

domain.

Format

#include

<eim.h>

int

eimChangeRegistry(EimHandle

*

eim,

char

*

registryName,

enum

EimRegistryAttr

attrName,

char

*

attrValue,

enum

EimChangeType

changeType,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

registry

to

change.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

attrName

(Input)

The

attribute

to

update.

Valid

values

are:

EIM_REGISTRY_DESCRIPTION

(0)

Change

the

registry

description.

Valid

changeType

is

EIM_CHG

(0).

EIM_REGISTRY_LABELEDURI

(1)

Change

the

URI

for

the

system

registry.

Valid

changeType

is

EIM_CHG

(0).

attrValue

(Input)

The

new

value

for

the

attribute.

The

value

can

be

a

NULL

string

(for

example,

″″).

changeType

(Input)

The

type

of

change

to

make.

On

z/OS,

this

could

be:

EIM_CHG

(0)

EIM

sets

the

attribute

to

the

new

value

(0).

The

attrName

parameter

indicates

which

changeType

is

allowed

for

each

attribute.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

eimChangeRegistry

128

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Related

Information

See

also

the

following:

v

“eimAddApplicationRegistry”

on

page

102

v

“eimAddSystemRegistry”

on

page

115

v

“eimListRegistries”

on

page

221

v

“eimRemoveRegistry”

on

page

262

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

registry

X

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimChangeRegistry

Chapter

9.

EIM

APIs

129

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_ATTR_INVAL

(5)

Attribute

name

is

not

valid.

EIMERR_CHGTYPE_INVAL

(9)

This

change

type

is

not

valid

with

the

requested

attribute.

Please

check

the

API

documentation.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

This

LDAP

connection

has

″read-only″

access.

A

connection

to

the

master

LDAP

server

with

read/write

is

required

to

complete

this

operation.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

changing

the

description

for

the

registry:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Change

the

description

for

this

registry

*/

rc

=

eimChangeRegistry(&handle,

"MyAppRegistry",

EIM_REGISTRY_DESCRIPTION,

"New

description",

EIM_CHG,

eimChangeRegistry

130

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

err);

.

.

.

eimChangeRegistry

Chapter

9.

EIM

APIs

131

eimChangeRegistryAlias

Purpose

Adds

or

removes

a

registry

alias

for

the

defined

registry.

Using

registry

aliases

is

one

way

to

decouple

registry

names

that

developers

use

from

the

registry

names

that

administrators

choose.

Developers

who

are

designing

applications

know

the

registry

type

their

application

uses

and

choose

the

registry

alias

their

program

will

use.

Developers

inform

the

administrator

which

registry

types

their

applications

use

and

the

EIM

registry

aliases

to

associate

with

that

registry

type.

The

administrator

adds

the

registry

alias

to

the

EIM

registry

of

the

appropriate

type.

The

application

can

use

the

eimGetRegistryNameFromAlias

API;

given

a

registry

alias,

this

API

returns

the

registry

name

for

the

entry

or

entries

with

that

registry

alias.

Format

#include

<eim.h>

int

eimChangeRegistryAlias(EimHandle

*

eim,

char

*

registryName,

char

*

aliasType,

char

*

aliasValue,

enum

EimChangeType

changeType,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

registry

to

change.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

aliasType

(Input)

A

type

of

alias

for

this

registry.

The

registry

types

that

EIM

provides

include

the

following:

v

RACF

v

OS400

v

KERBEROS

v

AIX

v

NDS

v

LDAP

v

PD

(Policy

Director)

v

WIN2K

To

view

the

eim.h

sample,

refer

to

“eim.h”

on

page

271.

Users

can

define

their

own

registry

alias

types.

See

“EIM

registry

definition”

on

page

10

for

details.

aliasValue

(Input)

The

value

for

this

alias.

eimChangeRegistryAlias

132

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Note:

Do

not

include

the

asterisk

(*)

wild

card

character

in

names

for

registry

aliases.

changeType

(Input)

The

type

of

change

to

make.

This

could

be

add

or

remove.

Use

EIM_ADD

to

add

an

alias,

and

EIM_RMV

to

remove

an

alias.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimGetRegistryNameFromAlias”

on

page

179

v

“eimListRegistryAliases”

on

page

228

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

registry

X

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

eimChangeRegistryAlias

Chapter

9.

EIM

APIs

133

Return

Value

Meaning

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_CHGTYPE_INVAL

(9)

This

change

type

is

not

valid

with

the

requested

attribute.

Please

check

the

API

documentation.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only

access.

A

connection

to

the

master

LDAP

server

with

read/write

is

required

to

complete

this

operation.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

adding

DNS

and

TCP/IP

alias

to

the

registry:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Add

a

dns

alias

for

this

registry

*/

rc

=

eimChangeRegistryAlias(&handle,

"MyRegistry",

eimChangeRegistryAlias

134

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

EIM_ALIASTYPE_DNS,

"Clueless",

EIM_ADD,

err);

.

.

.

/*

Add

a

tcpip

address

as

an

alias

*/

rc

=

eimChangeRegistryAlias(&handle,

"MyRegistry",

EIM_ALIASTYPE_TCPIP,

"254.237.190.239",

EIM_ADD,

err);

.

.

.

eimChangeRegistryAlias

Chapter

9.

EIM

APIs

135

eimChangeRegistryUser

Purpose

Changes

the

attributes

for

a

target

registry

user.

There

are

situations

when

a

mapping

lookup

operation

can

return

more

than

one

user.

Applications

can

choose

to

use

information

in

the

additional

information

field

to

distinguish

between

returned

target

identities

and

determine

which

to

use.

For

example,

suppose

Joe

has

two

identities

in

a

specific

registry

X,

joeuser

and

joeadmin.

An

application

provider

can

tell

the

administrator

to

add

additional

information,

for

example,

″appname-admin,″

to

the

appropriate

registry

user

--

in

this

case,

joeadmin.

The

application

can

provide

this

additional

information

on

the

lookup

APIs,

eimGetTargetFromSource

and

eimGetTargetFromIdentifier.

Format

#include

<eim.h>

int

eimChangeRegistryUser(EimHandle

*

eim,

char

*

registryName,

char

*

registryUserName,

enum

EimRegistryUserAttr

attrName,

char

*

attrValue,

enum

EimChangeType

changeType,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

registry

that

contains

this

user.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

registryUserName

(Input)

The

name

of

the

user

to

change

in

this

registry.

The

registry

user

name

should

begin

with

a

non-blank

character.

attrName

The

attribute

to

update.

Valid

values

are:

EIM_REGISTRYUSER_DESCRIPTION

(0)

Change

the

registry

description.

Valid

changeType

is

EIM_CHG

(0).

EIM_REGISTRYUSER_ADDL_INFO

(1)

Add

or

remove

additional

information

for

this

user.

You

can

have

more

than

one

AdditionalInfo

field.

Valid

changeType

is

EIM_ADD

(1)

or

EIM_RMV

(2).

attrValue

(Input)

The

new

value

for

the

attribute.

This

value

can

be

a

NULL

string

(for

example,

″″).

eimChangeRegistryUser

136

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

changeType

(Input)

The

type

of

change

to

make.

This

could

be

add,

remove,

or

change.

On

z/OS,

this

can

be

one

of

the

following:

EIM_CHG

(0)

EIM

sets

the

attribute

to

the

new

value.

EIM

creates

the

attribute

if

it

does

not

already

exist.

EIM_ADD

(1)

EIM

adds

the

attribute

and

its

value

to

the

identifier.

EIM

creates

the

attribute

if

it

does

not

already

exist.

EIM_RMV

(2)

EIM

removes

the

given

attribute

value

from

the

attribute

in

the

identifier

entry.

EIM

removes

the

attribute

itself

from

the

entry

if

no

values

remain

for

the

attribute.

To

remove

the

entire

attribute,

use

NULL

for

the

attribute

value.

The

attrName

parameter

indicates

the

type

allowed

for

each

attribute.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimListRegistryUsers”

on

page

233

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

registry

X

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

eimChangeRegistryUser

Chapter

9.

EIM

APIs

137

Return

Value

Meaning

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREGUSER

(29)

Registry

user

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ATTR_INVAL

(5)

Attribute

name

is

not

valid.

EIMERR_CHGTYPE_INVAL

(9)

This

change

type

is

not

valid

with

the

requested

attribute.

Please

check

the

API

documentation.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

changing

the

description

and

adding

additional

information

for

a

target

registry

user.

#include

<eim.h>

.

.

.

int

rc;

eimChangeRegistryUser

138

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Change

the

registry

user’s

description

*/

rc

=

eimChangeRegistryUser(&handle,

"MyRegistry",

"mjjones",

EIM_REGISTRYUSER_DESCRIPTION,

"cool

customer",

EIM_CHG,

err);

/*

Add

additional

information

to

the

registry

user*/

rc

=

eimChangeRegistryUser(&handle,

"MyRegistry",

"mjjones",

EIM_REGISTRYUSER_ADDL_INFO,

"security

officer",

EIM_ADD,

err);

/*

Add

additional

information

to

the

registry

user*/

rc

=

eimChangeRegistryUser(&handle,

"MyRegistry",

"mjjones",

EIM_REGISTRYUSER_ADDL_INFO,

"administrator",

EIM_ADD,

err);

eimChangeRegistryUser

Chapter

9.

EIM

APIs

139

eimConnect

Purpose

Connects

to

the

EIM

domain.

Format

#include

<eim.h>

int

eimConnect(EimHandle

*

eim,

EimConnectInfo

connectInfo,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

host

information.

This

parameter

is

required.

This

URL

has

the

following

format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.

If

not

specified,

the

default

LDAP

or

LDAPS

ports

will

be

used.)

dn

Distinguished

name

of

the

domain

to

change.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

connectInfo

(Input)

Connect

information.

This

parameter

provides

the

information

required

to

bind

to

LDAP.

If

the

system

is

configured

to

connect

to

a

secure

port,

EimSSLInfo

is

required.

For

the

EIM_SIMPLE

connect

type,

the

creds

field

should

contain

the

EimSimpleConnectInfo

structure

with

a

binddn

and

password.

If

the

connect

type

is

EIM_SIMPLE

and

you

provide

no

binddn

or

password,

the

connection

information

extracted

from

the

RACF

database

during

the

eimCreateHandle

API

is

used.

EimPasswordProtect

determines

the

level

of

password

protection

on

the

LDAP

bind.

EIM_PROTECT_NO

(0)

The

clear-text

password

is

sent

on

the

bind.

EIM_PROTECT_CRAM_MD5

(1)

The

protected

password

is

sent

on

the

bind.

eimConnect

140

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|

|

|

|
|
|
|

||

|

|
|

|
|

|
|
|
|

|
|

|
|
|

The

server

side

must

support

cram-md5

protocol

to

send

the

protected

password.

EIM_PROTECT_CRAM_MD5_OPTIONAL

(2)

The

protected

password

is

sent

on

the

bind

if

the

cram-md5

protocol

is

supported.

Otherwise,

the

clear-text

password

is

sent.

For

EIM_KERBEROS,

the

default

logon

credentials

are

used.

The

kerberos_creds

field

must

be

NULL.

For

EIM_CLIENT_AUTHENTICATION,

the

creds

field

is

ignored.

The

ssl

field

must

point

to

a

valid

EimSSLInfo

structure.

The

keyring

field

is

required

in

the

EimSSLInfo

structure.

It

can

be

the

name

of

a

System

SSL

key

database

file

or

a

RACF

keyring

name.

The

keyring_pw

field

is

required

when

the

keyring

is

the

name

of

a

System

SSL

key

database

field.

The

certificateLabel

field

is

optional.

If

it

is

NULL

the

default

certificate

in

the

keyring

is

used.

The

structure

layouts

follow:

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

eimConnect

Chapter

9.

EIM

APIs

141

|
|
|
|

|
|
|
|
|
|
|
|

Related

Information

See

also

the

following:

v

“eimConnectToMaster”

on

page

145

v

“eimCreateHandle”

on

page

156

v

“eimDestroyHandle”

on

page

164

v

“eimGetAttribute”

on

page

175

v

“eimSetAttribute”

on

page

267

Authorization

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_CONN_INVAL

(54)

Connection

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_NOT_SECURE

(32)

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SSL_REQ

(42)

The

system

is

configured

to

connect

to

a

secure

port.

EimSSLInfo

is

required.

EIMERR_CREDS_MUST_BE_NULL

(58)

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

eimConnect

142

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
|
|

||
|

|
|
|
|

Return

Value

Meaning

EISCONN

A

connection

has

already

been

established.

EIMERR_CONN

(11)

Connection

already

exists.

EMVSSAFEXTRERR

A

connection

has

already

been

established.

EIMERR_ZOS_R_DCEKEY

(6008)

Callable

service

failed.

EIMERR_ZOS_R_DCEKEY_BINDPW

(6009)

Callable

service

failed.

Bind

password

is

missing.

EMVSSAF2ERR

SAF/RACF

error

EIMERR_ZOS_NO_ACEE

(6010)

No

task

or

address

space

ACEE

found.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTSUP

Connection

type

is

not

supported.

EIMERR_CONN_NOTSUPP

(12)

Connection

type

is

not

supported.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

connecting

to

an

EIM

domain:

#include

<eim.h>

#include

<string.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Set

up

connection

information

*/

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

.

.

.

/*

Connect

to

LDAP

URL

defined

by

handle

with

specified

connection

credentials

*/

rc

=

eimConnect(&handle,

con,

err

.

.

.

eimConnect

Chapter

9.

EIM

APIs

143

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The

following

example

illustrates

connecting

to

an

EIM

domain

using

the

default

Kerberos

credential

for

authentication:

#include

<eim.h>

#include

<string.h>

.

.

.

Int

rc;

Char

eimerr

[200];

EimRC

*err;

EimHandle

handle;

EimConnectInfo

con;

/*Set

up

error

structure.*/

memset(eimerr,0x00,200);

err

=(EimRC

*)eimerr;

err->memoryProvidedByCaller

=200;

/*Create

new

eim

handle

for

a

specified

ldapURL

*/

ldapURL

="ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

rc

=eimCreateHandle(&handle,ldapURL,err);

.

.

.

/*Set

up

connection

information

*/

memset(&con,

0x00,

sizeof(con));

con.type

=EIM_KERBEROS;

/*Connect

to

LDAP

URL

defined

in

handle

with

the

specified

connection

credentials*/

rc

=eimConnect(&handle,con,err);

.

.

.

eimConnect

144

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

eimConnectToMaster

Purpose

Connects

to

the

EIM

master

domain

controller.

You

should

use

this

API

if

an

earlier

API

invocation

returned

a

referral

error

(EROFS).

A

referral

error

indicates

that

the

current

EIM

connection

is

to

a

replication

system.

To

make

updates,

you

must

make

an

explicit

connection

to

the

master

system.

If

the

host

system

is

not

a

replica,

then

the

master

information

retrieved

is

the

same

as

the

host

and

port

defined

in

the

handle.

Format

#include

<eim.h>

int

eimConnectToMaster(EimHandle

*

eim,

EimConnectInfo

connectInfo,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

host

information.

This

parameter

is

required.

This

URL

has

the

following

format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.

If

not

specified,

the

default

LDAP

or

LDAPS

ports

will

be

used.)

dn

Distinguished

name

of

the

domain

to

change.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

connectInfo

(Input)

Connect

information.

This

parameter

provides

the

information

required

to

bind

to

LDAP.

If

the

system

is

configured

to

connect

to

a

secure

port,

EimSSLInfo

is

required.

For

the

EIM_SIMPLE

connect

type,

the

creds

field

should

contain

the

EimSimpleConnectInfo

structure

with

a

binddn

and

password.

On

z/OS,

if

the

connect

type

is

EIM_SIMPLE

and

you

provide

no

bindDn

or

bindPw,

the

connection

information

extracted

from

the

RACF

database

during

the

eimCreateHandle

API

is

used.

EimPasswordProtect

determines

the

level

of

password

protection

on

the

LDAP

bind.

eimConnectToMaster

Chapter

9.

EIM

APIs

145

|
|
|

|

|

|

|
|
|
|

||

|

|
|

|
|

|
|

EIM_PROTECT_NO

(0)

The

clear-text

password

is

sent

on

the

bind.

EIM_PROTECT_CRAM_MD5

(1)

The

protected

password

is

sent

on

the

bind.

The

server

side

must

support

cram-md5

protocol

to

send

the

protected

password.

EIM_PROTECT_CRAM_MD5_OPTIONAL

(2)

The

protected

password

is

sent

on

the

bind

if

the

cram-md5

protocol

is

supported.

For

EIM_KERBEROS,

the

default

logon

credentials

are

used.

The

kerberos_creds

field

must

be

NULL.

For

EIM_CLIENT_AUTHENTICATION,

the

creds

field

is

ignored.

The

ssl

field

must

point

to

a

valid

EimSSLInfo

structure.

The

keyring

field

is

required

in

the

EimSSLInfo

structure.

It

can

be

the

name

of

a

System

SSL

key

database

file

or

a

RACF

keyring

name.

The

keyring_pw

field

is

required

when

the

keyring

is

the

name

of

a

System

SSL

key

database

field.

The

certificateLabel

field

is

optional.

If

it

is

NULL

the

default

certificate

in

the

keyring

is

used.

The

structure

layouts

follow:

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

eimConnectToMaster

146

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

|
|
|
|
|
|
|
|

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimConnect”

on

page

140

v

“eimCreateHandle”

on

page

156

v

“eimDestroyHandle”

on

page

164

v

“eimGetAttribute”

on

page

175

v

“eimSetAttribute”

on

page

267

Authorization

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimConnectToMaster

Chapter

9.

EIM

APIs

147

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_CONN_INVAL

(54)

Connection

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_NOT_SECURE

(32)

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PROTECT_INVAL

(22)

The

protect

parameter

in

EimSimpleConnectInfo

is

not

valid.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SSL_REQ

(42)

The

system

is

configured

to

connect

to

a

secure

port.

EimSSLInfo

is

required.

EIMERR_CRED_MUST_BE_NULL

(58)

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

EISCONN

A

connection

has

already

been

established.

EIMERR_CONN

(11)

Connection

already

exists.

EMVSSAFEXTRERR

SAF/EXTRACT

error.

EIMERR_ZOS_R_DCEKEY_BINDPW

(6008)

R_DCEKEY

callable

service

failed.

EIMERR_ZOS_R_DCEKEY

(6009)

R_

DCEKEY

callable

service

failed.

Bind

password

is

missing.

EMVSSAF2ERR

SAF/RACF

error

EIMERR_ZOS_NO_ACEE

(6010)

No

task

or

address

space

ACEE

found.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

(z/OS

does

not

return

this

value.)

ENOTSUP

A

connection

has

already

been

established.

EIMERR_CONN_NOTSUPP

(12)

Connection

type

is

not

supported.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

connecting

to

an

EIM

master

domain:

eimConnectToMaster

148

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
|
|

||
|

|
|
|
|

#include

<eim.h>

#include

<string.h>

.

.

.

Int

rc;

Char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Set

up

connection

information

*/

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

.

.

.

/*

Connect

to

master

LDAP

URL

defined

in

handle

with

the

specified

connection

credentials*/

rc

=

eimConnectToMaster(&handle,

con,

err);

.

.

.

The

following

example

illustrates

connecting

to

an

EIM

master

domain

using

client

authentication,

referencing

the

default

digital

certificate

in

a

key

database

file:

#include

<eim.h>

#include

<string.h>

.

.

.

Int

rc;

Char

eimerr

[200];

EimRC

*err;

EimHandle

handle;

EimConnectInfo

con;

EimSSLInfo

sslinfo;

char

*ldapURL;

/*Set

up

error

structure.*/

memset(eimerr,0x00,200);

err

=(EimRC

*)eimerr;

err->memoryProvidedByCaller

=200;

/*Create

new

eim

handle

for

a

secure

SSL

host

*/

ldapURL

="ldaps://eimsystem:636/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

rc

=eimCreateHandle(&handle,ldapURL,err);

.

.

.

/*Set

up

SSL

information

*/

sslinfo.keyring

="/u/eimuser/ldapclient.kdb"

sslinfo.keyring_pw

="secret";

sslinfo.certificateLabel

=NULL;

/*Set

up

connection

information

*/

eimConnectToMaster

Chapter

9.

EIM

APIs

149

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

memset(&con,

0x00,

sizeof(con));

con.type

=EIM_CLIENT_AUTHENTICATION;

con.ssl

=&sslinfo

/*Connect

to

master

LDAP

URL

defined

in

handle

with

specified

connection

credentials*/

rc

=eimConnectToMaster(&handle,con,err);

.

.

.

eimConnectToMaster

150

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|

|

eimCreateDomain

Purpose

Creates

an

EIM

domain

on

the

specified

EIM

domain

controller.

Format

#include

<eim.h>

int

eimCreateDomain(char

*

ldapURL,

EimConnectInfo

connectInfo,

char

*

description,

EimRC

*

eimrc)

Parameters

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

host

information.

This

parameter

is

required.

This

URL

has

the

following

format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.

If

not

specified,

the

default

LDAP

or

LDAPS

ports

will

be

used.)

dn

Distinguished

name

of

the

domain

to

create.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

connectInfo

(Input)

Connect

information.

This

parameter

provides

the

information

required

to

bind

to

LDAP.

If

the

system

is

configured

to

connect

to

a

secure

port,

EimSSLInfo

is

required.

For

the

EIM_SIMPLE

connect

type,

the

creds

field

should

contain

the

EimSimpleConnectInfo

structure

with

a

binddn

and

password.

EimPasswordProtect

determines

the

level

of

password

protection

on

the

LDAP

bind.

EIM_PROTECT_NO

(0)

The

clear-text

password

is

sent

on

the

bind.

EIM_PROTECT_CRAM_MD5

(1)

The

protected

password

is

sent

on

the

bind.

The

server

side

must

support

cram-md5

protocol

to

send

the

protected

password.

EIM_PROTECT_CRAM_MD5_OPTIONAL

(2)

The

protected

password

is

sent

on

the

bind

if

eimCreateDomain

Chapter

9.

EIM

APIs

151

|
|

|

|

|

|
|
|
|

||

|

|
|

|
|

|
|
|
|

|
|

|
|

the

cram-md5

protocol

is

supported.

Otherwise,

the

clear-text

password

is

sent.

For

EIM_KERBEROS,

the

default

logon

credentials

are

used.

The

kerberos_creds

field

must

be

NULL.

For

EIM_CLIENT_AUTHENTICATION,

the

creds

field

is

ignored.

The

ssl

field

must

point

to

a

valid

EimSSLInfo

structure.

The

keyring

field

is

required

in

the

EimSSLInfo

structure.

It

can

be

the

name

of

a

System

SSL

key

database

file

or

a

RACF

keyring

name.

The

keyring_pw

field

is

required

when

the

keyring

is

the

name

of

a

System

SSL

key

database

field.

The

certificateLabel

field

is

optional.

If

it

is

NULL

the

default

certificate

in

the

keyring

is

used.

The

structure

layouts

follow:

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

description

(Input)

Textual

description

for

the

new

EIM

domain

entry.

This

parameter

can

be

NULL.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

eimCreateDomain

152

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|

|
|
|
|
|
|

Related

Information

See

also

the

following:

v

“eimChangeDomain”

on

page

119

v

“eimDeleteDomain”

on

page

159

v

“eimListDomains”

on

page

207

Authorization

EIM

data

LDAP

administrators

have

the

authority

to

create

an

EIM

domain.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EEXIST

EIM

domain

already

exists.

EIMERR_DOMAIN_EXISTS

(14)

EIM

domain

already

exists

in

EIM.

eimCreateDomain

Chapter

9.

EIM

APIs

153

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_CHAR_INVAL

(21)

A

restricted

character

was

used

in

the

object

name.

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

EIMERR_CONN_INVAL

(54)

Connection

type

is

not

valid.

EIMERR_NOT_SECURE

(32)

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PROTECT_INVAL

(22)

The

protect

parameter

in

EimSimpleConnectInfo

is

not

valid.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SSL_REQ

(42)

The

system

is

configured

to

connect

to

a

secure

port.

EimSSLInfo

is

required.

EIMERR_URL_NODN

(45)

URL

has

no

DN

(required).

EIMERR_URL_NODOMAIN

(46)

URL

has

no

domain

(required).

EIMERR_URL_NOHOST

(47)

URL

does

not

have

a

host.

EIMERR_URL_NOTLDAP

(49)

URL

does

not

begin

with

ldap.

EIMERR_CRED_MUST_BE_NULL

(58)

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTSUP

Connection

type

is

not

supported.

EIMERR_CONN_NOTSUPP

(12)

Connection

type

is

not

supported.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_URL_READ_ONLY

(50)

LDAP

connection

can

be

made

only

to

a

replica

LDAP

server.

Change

the

connection

information

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

creates

an

EIM

domain

with

the

name

of

myEIMDomain.

The

distinguished

name

for

the

domain

after

it

is

created

will

be:

″ibm-
eimDomainName=myEIMDomain,o=mycompany,c=us″.

eimCreateDomain

154

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
|
|

||
|

|
|
|
|

#include

<eim.h>

#include

<stdio.h>

#include

<string.h>

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

char

*

ldapURL

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

EimConnectInfo

con;

/*

Set

up

connection

information

*/

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Create

a

new

EIM

domain

*/

if

(0

!=

(rc

=

eimCreateDomain(ldapURL,

con,

NULL,

err)))

printf("Create

domain

error

=

%d",

rc);

return

0;

eimCreateDomain

Chapter

9.

EIM

APIs

155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

eimCreateHandle

Purpose

Allocates

an

EimHandle

structure,

which

is

used

to

identify

the

EIM

connection

and

to

maintain

per-connection

information.

The

EimHandle

structure

is

passed

on

subsequent

calls

to

other

EIM

operations.

Format

#include

<eim.h>

int

eimCreateHandle(EimHandle

*

eim,

char

*

ldapURL,

EimRC

*

eimrc)

Parameters

eim

(Output)

The

pointer

to

an

EIM

handle

to

return.

This

handle

is

input

for

other

EIM

APIs.

ldapURL

A

NULL

parameter

indicates

the

ldapURL

information

is

retrieved

from

a

RACF

profile.

eimCreateHandle

uses

the

LDAP

host

name

and

domain

distinguished

name

stored

in

the

profile

to

create

the

ldapURL.

The

eimCreateHandle

retrieves

the

information

from

one

of

the

following

profiles

in

this

order:

1.

The

LDAPBIND

class

profile

associated

with

the

caller’s

user

profile

2.

The

IRR.EIM.DEFAULTS

profile

in

the

LDAPBIND

class

3.

The

system

default

profile,

IRR.PROXY.DEFAULTS

profile

in

the

FACILITY

class

This

URL

has

the

following

format:

ldap://host:port/dn

ldaps://host:port/dn

host:port

Is

the

name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.)

dn

Is

the

distinguished

name

of

the

domain

with

which

to

work.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimConnect”

on

page

140

eimCreateHandle

156

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

v

“eimConnectToMaster”

on

page

145

v

“eimDestroyHandle”

on

page

164

v

“eimGetAttribute”

on

page

175

v

“eimSetAttribute”

on

page

267

Authorization

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

Pointer

parameter

is

not

valid.

EIMERR_URL_NODN

(45)

URL

has

no

DN

(required).

EIMERR_URL_NODOMAIN

(46)

URL

has

no

domain

(required).

EIMERR_URL_NOHOST

(47)

URL

does

not

have

a

host.

EIMERR_URL_NOTLDAP

(49)

URL

does

not

begin

with

ldap.

EMVSSAFEXTRERR

SAF/RACF

EXTRACT

error.

EIMERR_ZOS_USER_XTR

(6002)

RACROUTE

REQUEST=EXTRACT

error

retrieving

EIM

configuration

information

from

the

callers’s

USER

profile.

EIMERR_ZOS_XTR_EIM

(6003)

RACROUTE

REQUEST=EXTRACT

error

retrieving

EIM

information

from

a

RACF

profile.

EIMERR_ZOS_XTR_PROXY

(6005)

RACROUTE

REQUEST=EXTRACT

error

retrieving

PROXY

information

from

a

RACF

profile.

eimCreateHandle

Chapter

9.

EIM

APIs

157

Return

Value

Meaning

EMVSSAF2ERR

SAF/RACF

error.

EIMERR_ZOS_XTR_DOMAINDN

(6004)

EIM

domain

distinguished

name

is

missing.

EIMERR_ZOS_XTR_LDAPHOST

(6006)

PROXY

LDAP

host

is

missing.

EIMERR_ZOS_XTR_BINDDN

(6007)

PROXY

bind

distinguished

name

is

missing.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOSYS

EIM

is

not

configured

EIMERR_NOTCONFIG

(30)

EIM

environment

is

not

configured.

On

z/OS,

issue

RACF

commands

to

correct

the

configuration

error.

Then

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

creating

an

EIM

handle

with

an

LDAP

URL

and

using

information

stored

in

a

RACF

profile.

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimHandle

handle2;

char

*

ldapURL

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Create

a

new

eim

handle

using

stored

LDAP

host

and

DomainDN

in

RACF

profile

*/

rc

=

eimCreateHandle(&handle,

NULL,

err);

.

.

.

/*

Create

a

new

eim

handle

using

a

specified

URL

*/

rc

=

eimCreateHandle(&handle2,

ldapURL,

err);

.

.

.

eimCreateHandle

158

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimDeleteDomain

Purpose

Deletes

the

EIM

domain

information.

If

there

are

any

registries

or

identifiers

in

the

domain,

then

it

cannot

be

deleted.

Format

#include

<eim.h>

int

eimDeleteDomain(char

*

ldapURL,

EimConnectInfo

connectInfo,

EimRC

*

eimrc)

Parameters

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

host

information.

This

parameter

is

required.

This

URL

has

the

following

format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.

If

not

specified,

the

default

LDAP

or

LDAPS

ports

will

be

used.)

dn

Distinguished

name

of

the

domain

to

delete.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

connectInfo

(Input)

Connect

information.

This

parameter

provides

the

information

required

to

bind

to

LDAP.

If

the

system

is

configured

to

connect

to

a

secure

port,

EimSSLInfo

is

required.

For

the

EIM_SIMPLE

connect

type,

the

creds

field

should

contain

the

EimSimpleConnectInfo

structure

with

a

binddn

and

password.

EimPasswordProtect

determines

the

level

of

password

protection

on

the

LDAP

bind.

EIM_PROTECT_NO

(0)

The

clear-text

password

is

sent

on

the

bind.

EIM_PROTECT_CRAM_MD5

(1)

The

protected

password

is

sent

on

the

bind.

The

server

side

must

support

cram-md5

protocol

to

send

the

protected

password.

EIM_PROTECT_CRAM_MD5_OPTIONAL

(2)

The

protected

password

is

sent

on

the

bind

if

the

cram-md5

protocol

is

supported.

Otherwise,

the

clear-text

password

is

sent.

eimDeleteDomain

Chapter

9.

EIM

APIs

159

|
|

|

|

|

|
|
|
|

||

|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

For

EIM_KERBEROS,

the

default

logon

credentials

are

used.

The

kerberos_creds

field

must

be

NULL.

For

EIM_CLIENT_AUTHENTICATION,

the

creds

field

is

ignored.

The

ssl

field

must

point

to

a

valid

EimSSLInfo

structure.

The

keyring

field

is

required

in

the

EimSSLInfo

structure.

It

can

be

the

name

of

a

System

SSL

key

database

file

or

a

RACF

keyring

name.

The

keyring_pw

field

is

required

when

the

keyring

is

the

name

of

a

System

SSL

key

database

field.

The

certificateLabel

field

is

optional.

If

it

is

NULL

the

default

certificate

in

the

keyring

is

used.

The

structure

layouts

follow:

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimCreateDomain”

on

page

151

v

“eimChangeDomain”

on

page

119

v

“eimListDomains”

on

page

207

eimDeleteDomain

160

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|
|
|
|
|

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NODOMAIN

(24)

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimDeleteDomain

Chapter

9.

EIM

APIs

161

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_CONN_INVAL

(54)

Connection

type

is

not

valid.

EIMERR_NOT_SECURE

(32)

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PROTECT_INVAL

(22)

The

protect

parameter

in

EimSimpleConnectInfo

is

not

valid.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SSL_REQ

(42)

The

system

is

configured

to

connect

to

a

secure

port.

EimSSLInfo

is

required.

EIMERR_URL_NODN

(45)

URL

has

no

DN

(required).

EIMERR_URL_NODOMAIN

(46)

URL

has

no

domain

(required).

EIMERR_URL_NOHOST

(47)

URL

does

not

have

a

host.

EIMERR_URL_NOTLDAP

(49)

URL

does

not

begin

with

ldap.

EIMERR_CRED_MUST_BE_NULL

(58)

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTSAFE

Not

safe

to

delete

domain.

EIMERR_DOMAIN_NOTEMPTY

(15)

Cannot

delete

a

domain

when

it

has

registries

or

identifiers.

ENOTSUP

Connection

type

is

not

supported.

EIMERR_CONN_NOTSUPP

(12)

Connection

type

is

not

supported.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_URL_READ_ONLY

(50)

LDAP

connection

can

be

made

only

to

a

replica

LDAP

server.

Change

the

connection

information

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

deletes

the

specified

EIM

domain

information:

#include

<eim.h>

#include

<string.h>

int

main(int

argc,

char

*argv[])

eimDeleteDomain

162

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

||
|
|

||
|

|
|
|
|

|
|
|
|
|

{

int

rc;

char

eimerr[200];

EimRC

*

err;

char

*

ldapURL

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

EimConnectInfo

con;

/*

Set

up

connection

information

*/

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Delete

this

domain

*/

if

(0

!=

(rc

=

eimDeleteDomain(ldapURL,

con,

err)))

printf("Delete

domain

error

=

%d",

rc);

return

0;

}

eimDeleteDomain

Chapter

9.

EIM

APIs

163

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

eimDestroyHandle

Purpose

Frees

resources

associated

with

the

EimHandle

and

closes

connections

to

the

EIM

domain

controllers.

This

closes

the

EIM

connection

for

this

handle.

Format

#include

<eim.h>

int

eimDestroyHandle(EimHandle

*

eim,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimConnect”

on

page

140

v

“eimConnectToMaster”

on

page

145

v

“eimCreateHandle”

on

page

156

v

“eimGetAttribute”

on

page

175

v

“eimSetAttribute”

on

page

267

Authorization

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

eimDestroyHandle

164

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EUNKNOWN

Unexpected

exception.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

destroying

an

EIM

handle:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

*

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(handle,

err);

.

.

.

eimDestroyHandle

Chapter

9.

EIM

APIs

165

eimErr2String

Purpose

Converts

the

EIM

return

code

structure

that

an

EIM

function

returns

into

a

NULL-terminated

character

string

that

describes

the

error.

Format

#include

<eim.h>

char

*

eimErr2String(EimRC

*

eimrc)

Parameters

eimrc

(Input)

The

structure

in

which

to

return

error

code

information.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Authorization

z/OS

authorization

None.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

address

of

error

string

Request

was

successful.

(The

caller

is

expected

to

free

the

error

string.)

NULL

Request

was

unsuccessful.

The

eimErr2String

sets

global

errno.

The

errno

can

be

set

by

catopen,

catgets,

catclose,

or

one

of

the

following

values:

EBADDATA

eimrc

is

not

valid.

No

eimrc

structure

was

provided

or

the

eimrc

is

not

large

enough

to

be

an

eimrc

structure.

Example

The

following

example

converts

an

EIM

RC

into

an

error

message

and

prints

it.

#include

<eim.h>

#include

<stdio.h>

...

char

eimerr[150];

EimRC

*

err;

char

*

message;

...

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,150);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

150;

/*

Call

an

EIM

API

that

returns

an

EimRC...*/

eimErr2String

166

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|

/*

Convert

the

error

structure

to

a

message

*/

if

(NULL

==

(message

=

eimErr2String(err)))

printf("eimErr2String

error

=

%s",strerror(errno));

else

{

printf("EIM

API

Error

Message:

%s",message);

free(message);

}

...

eimErr2String

Chapter

9.

EIM

APIs

167

eimGetAssociatedIdentifiers

Purpose

Returns

a

list

of

the

identifiers.

Given

a

registry

name

and

registry

user

name

within

that

user

registry,

this

API

returns

the

EIM

identifier

associated

with

it.

It

is

possible

that

more

than

one

person

is

associated

with

a

specific

user

name.

This

occurs

when

users

share

identities

(and

possibly

passwords)

within

a

single

instance

of

a

user

registry.

While

this

practice

is

not

condoned,

it

does

happen.

This

creates

an

ambiguous

result.

Format

#include

<eim.h>

int

eimGetAssociatedIdentifiers(EimHandle

*

eim,

enum

EimAssociationType

associationType,

char

*

registryName,

char

*

registryUserName,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

associationType

(Input)

The

type

of

association

to

retrieve.

Valid

values

are:

EIM_ALL_ASSOC

(0)

Retrieve

all

associations.

EIM_TARGET

(1)

Retrieve

target

associations.

EIM_SOURCE

(2)

Retrieve

source

associations.

EIM_SOURCE_AND_TARGET

(3)

Retrieve

source

and

target

associations.

EIM_ADMIN

(4)

Retrieve

administrative

associations.

registryName

(Input)

The

registry

name

for

the

lookup.

If

this

string

has

a

null

value,

the

API

uses

the

system

default

local

registry

name

from

the

instorage

copy

of

the

registry

name.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

registryUserName

(Input)

The

registry

user

name

for

the

lookup.

lengthOfListData

(Input)

The

number

of

bytes

that

the

caller

provides

for

the

listData

parameter.

The

minimum

required

size

is

20

bytes.

eimGetAssociatedIdentifiers

168

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

eimIdentifier

structures.

The

firstEntry

is

used

to

get

to

the

first

EimIdentifier

structure

in

the

linked

list.

The

number

of

complete

EimIdentifier

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimIdentifier

structures

as

will

fit.

It

can

also

contain

a

partial

EimIdentifier

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimIdentifier

structure

follows:

typedef

struct

EimIdentifier

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

uniquename;

/*

Unique

name

*/

EimListData

description;

/*

Description

*/

EimListData

entryUUID;

/*

UUID

*/

EimSubList

names;

/*

EimIdentifierName

sublist

*/

EimSubList

additionalInfo;

/*

EimAddlInfo

sublist

*/

}

EimIdentifier;

Identifiers

might

have

defined

several

name

attributes

as

well

as

several

additional

information

attributes.

In

the

EimIdentity

structure,

the

name

EimSubList

gives

addressability

to

a

linked

list

of

EimIdentifierName

structures:

typedef

struct

EimIdentifierName

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Name

*/

}

EimIdentifierName;

The

additionalInfo

EimSubList

gives

addressability

to

a

linked

list

of

EimAddlInfo

structures.

The

EimAddlInfo

structure

follows:

typedef

struct

EimAddlInfo

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

addlInfo;

/*

Additional

info

*/

}

EimAddlInfo;

The

EimSubList

structure

follows:

eimGetAssociatedIdentifiers

Chapter

9.

EIM

APIs

169

typedef

struct

EimSubList

{

unsigned

int

listNum;

/*

Number

of

entries

in

the

list

*/

unsigned

int

disp;

/*

Displacement

to

sublist.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimSubList;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData

eimrc

(Input/output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddIdentifier”

on

page

111

v

“eimChangeIdentifier”

on

page

124

v

“eimListIdentifiers”

on

page

214

v

“eimRemoveIdentifier”

on

page

259

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

mapping-lookup

authority

v

EIM

registry

X

administrator

The

returned

list

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

eimGetAssociatedIdentifiers

170

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ASSOC_TYPE_INVAL

(4)

Association

type

is

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

ENOSYS

EIM

is

not

configured

EIMERR_NOTCONFIG

(30)

(Only

z/OS

returns

this

value.)

EIM

environment

is

not

configured.

On

z/OS,

issue

RACF

commands

to

correct

the

configuration

error

instead

of

using

eimSetConfiguration.

Then

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

eimGetAssociatedIdentifiers

Chapter

9.

EIM

APIs

171

Example

The

following

example

lists

all

of

the

identiifers

associated

with

the

registry,

MyRegistry,

and

a

user

of

carolb.

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

associated

identifiers

*/

if

(0

!=

(rc

=

eimGetAssociatedIdentifiers(&handle,

EIM_ALL_ASSOC,

"MyRegistry",

"carolb",

1000,

list,

err)))

{

printf("Get

Associated

Identifers

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

eimGetAssociatedIdentifiers

172

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimIdentifier

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimIdentifier

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("Unique

name",

entry,

offsetof(EimIdentifier,

uniquename));

printListData("description",

entry,

offsetof(EimIdentifier,

description));

printListData("entryUUID",

entry,

offsetof(EimIdentifier,

entryUUID));

printSubListData("Names",

entry,

offsetof(EimIdentifier,

names));

printSubListData("Additional

Info",

entry,

offsetof(EimIdentifier,

additionalInfo));

/*

advance

to

next

entry

*/

entry

=

(EimIdentifier

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset)

{

int

i;

EimSubList

*

subList;

EimAddlInfo

*

subentry;

/*

Address

the

EimSubList

object

*/

subList

=

(EimSubList

*)((char

*)entry

+

offset);

if

(subList->listNum

>

0)

{

subentry

=

(EimAddlInfo

*)((char

*)entry

+

subList->disp);

for

(i

=

0;

i

<

subList->listNum;

i++)

{

/*

Print

out

results

*/

printListData(fieldName,

eimGetAssociatedIdentifiers

Chapter

9.

EIM

APIs

173

subentry,

offsetof(EimAddlInfo,

addlInfo));

/*

advance

to

next

entry

*/

subentry

=

(EimAddlInfo

*)((char

*)subentry

+

subentry->nextEntry);

}

}

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimGetAssociatedIdentifiers

174

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimGetAttribute

Purpose

Gets

attributes

for

this

EIM

handle.

If

the

host

system

for

the

EIM

domain

is

a

replica

LDAP

server,

the

handle

master

attributes

contain

the

host

system

information

for

the

master

LDAP

server.

If

the

host

system

for

the

EIM

domain

is

a

master

(meaning

it

is

writable)

LDAP

server,

the

HOST,

PORT

and

SECPORT

handle

attributes

and

master

handle

attributes

have

the

same

values.

Format

#include

<eim.h>

int

eimGetAttribute(EimHandle

*

eim,

enum

EimHandleAttr

attrName,

unsigned

int

lengthOfEimAttribute,

EimAttribute

*

attribute,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

attrName

(Input)

The

name

of

the

attribute

to

retrieve.

The

following

values

are

valid:

EIM_HANDLE_CCSID

(0)

(z/OS

does

not

support

this

value.)

This

is

the

coded

character

set

identifier

(CCSID)

of

character

data

that

the

caller

of

EIM

APIs

passes

with

the

specified

EimHandle.

The

returned

field

is

a

4-byte

integer.

EIM_HANDLE_DOMAIN

(1)

The

EIM

domain

name.

EIM_HANDLE_HOST

(2)

The

host

system

for

the

EIM

domain.

EIM_HANDLE_PORT

(3)

The

port

for

the

EIM

connection.

The

returned

field

is

a

4-byte

integer.

EIM_HANDLE_SECPORT

(4)

Security

type

for

this

connection.

The

returned

field

is

a

4-byte

integer.

Possible

values

are:

0

Non-SSL

1

Port

uses

SSL

EIM_HANDLE_MASTER_HOST

(5)

If

the

EIM_HANDLE_HOST

is

a

replica

LDAP

server,

this

value

indicates

the

master

LDAP

server.

EIM_HANDLE_MASTER_PORT

(6)

If

the

EIM_HANDLE_HOST

is

a

replica

LDAP

server,

this

value

indicates

the

port

for

the

master

LDAP

server.

The

returned

field

is

a

4-byte

integer.

EIM_HANDLE_MASTER_SECPORT

(7)

If

the

EIM_HANDLE_HOST

is

a

replica

LDAP

server,

this

value

indicates

the

security

type

for

eimGetAttribute

Chapter

9.

EIM

APIs

175

|

the

master

LDAP

server.

The

returned

field

is

a

4-byte

integer.

Possible

values

are:

0

Non-SSL

1

Port

uses

SSL

lengthOfEimAttribute

(Input)

The

number

of

bytes

the

caller

provides

for

the

attribute

information.

The

minimum

size

required

is

16

bytes.

attribute

(Output)

A

pointer

to

the

data

to

return.

The

EimAttribute

structure

contains

information

about

the

returned

data.

The

API

returns

as

much

data

as

space

has

been

provided.

The

EimAttribute

structure

follows:

typedef

struct

EimAttribute

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

EimListData

attribute;

/*

handle

attribute

*/

}

EimAttribute;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimConnect”

on

page

140

v

“eimConnectToMaster”

on

page

145

v

“eimCreateHandle”

on

page

156

v

“eimDestroyHandle”

on

page

164

v

“eimSetAttribute”

on

page

267

Authorization

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

eimGetAttribute

176

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ATTR_INVAL

(5)

Attribute

name

is

not

valid.

EIMERR_ATTRIB_SIZE

(53)

Length

of

EimAttribute

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

ENOTSUP

Attribute

is

not

supported.

EIMERR_ATTR_NOTSUPP

(6)

Attribute

not

supported.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

gets

the

distiguished

name

(DN)

of

the

domain

for

the

given

EIM

handle:

#include

<eim.h>

#include

<string.h>

#include

<stdio.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

eimGetAttribute

Chapter

9.

EIM

APIs

177

EimHandle

handle;

char

*

data;

char

*

listData[1000];

EimAttribute

*

list

=

(EimAttribute

*)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Get

EIM

domain

name

*/

if

(0

!=

(rc

=

eimGetAttribute(&handle,

EIM_HANDLE_DOMAIN,

1000,

list,

err)))

{

char

*

errorString;

if

(NULL

!=

(errorString

=

eimErr2String(Err)))

{

printf("Get

Attribute

error

=

%d

-

%s\n",

rc,

errorString);

free(errorString);

}

else

{

printf("Get

Attribute

error

=

%d

-

%s\n",

rc,

strerror(rc));

}

}

else

{

data

=

(char

*

)list

+

list->attribute.disp;

printf("Domain

name

=

%s.\n",

data);

}

.

.

.

eimGetAttribute

178

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimGetRegistryNameFromAlias

Purpose

Returns

a

list

of

registry

names

that

match

the

search

criteria

that

aliasType

and

aliasValue

specify.

Format

#include

<eim.h>

int

eimGetRegistryNameFromAlias(EimHandle

*

eim,

char

*

aliasType,

char

*

aliasValue,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

aliasType

(Input)

The

type

of

alias

for

which

to

search.

For

a

list

of

predefined

alias

types,

see

page

84.

aliasValue

(Input)

The

value

of

the

alias

to

use

for

this

search.

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimRegistryName

structures.

The

firstEntry

is

used

to

get

to

the

first

EimRegistryName

structure

in

the

linked

list.

The

number

of

completed

EimRegistryName

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimRegistryName

structures

as

will

fit.

It

can

also

contain

a

partial

EimRegistryName

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

eimGetRegistryNameFromAlias

Chapter

9.

EIM

APIs

179

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimRegistryName

structure

follows:

typedef

struct

EimRegistryName

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Name

*/

}

EimRegistryName;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimChangeRegistryAlias”

on

page

132

v

“eimListRegistryAliases”

on

page

228

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping

lookup

The

returned

list

contains

only

the

information

that

the

user

has

authority

to

access,

meaning

it

could

be

empty.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

eimGetRegistryNameFromAlias

180

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

gets

the

registry

name

from

the

specified

alias:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

eimGetRegistryNameFromAlias

Chapter

9.

EIM

APIs

181

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

all

aliases

for

the

registry

*/

if

(0

!=

(rc

=

eimGetRegistryNameFromAlias(&handle,

EIM_ALIASTYPE_DNS,

"Clueless",

1000,

list,

err)))

{

printf("List

registry

aliases

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimRegistryName

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

eimGetRegistryNameFromAlias

182

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

entry

=

(EimRegistryName

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

/*

Print

out

results

*/

printListData("Registry

Name",

entry,

offsetof(EimRegistryName,

name));

/*

advance

to

next

entry

*/

entry

=

(EimRegistryName

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimGetRegistryNameFromAlias

Chapter

9.

EIM

APIs

183

eimGetTargetFromIdentifier

Purpose

Gets

the

target

identity

or

identities

for

the

specified

registry

that

are

associated

with

the

specified

EIM

identifier.

Format

#include

<eim.h>

int

eimGetTargetFromIdentifier(EimHandle

*

eim,

EimIdentifierInfo

*

idName,

char

*

targetRegistryName,

char

*

additionalInformation,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

idName

(Input)

A

structure

that

contains

the

name

of

the

identifier

for

this

lookup

operation.

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

EIM_UNIQUE_NAME

and

EIM_ENTRY_UUID

find

at

most

one

matching

identifier.

EIM_NAME

results

in

an

error

if

your

EIM

domain

has

more

than

one

identifier

containing

the

same

name.

targetRegistryName

(Input)

The

target

registry

for

this

lookup

operation.

A

null

value

for

the

string

causes

the

sevice

to

use

the

system

default

local

registry

name

from

the

instorage

copy

of

the

registry

name.

additionalInfo

(Input)

Additional

information

that

is

selection

criteria

for

this

operation.

This

can

be

a

NULL

string

(for

example,

″″).

This

filter

data

can

contain

the

wildcard

character,

an

asterisk

(*).

This

field

can

be

repeated

and

can

contain

more

than

one

value.

eimGetTargetFromIdentifier

184

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimTargetIdentity

structures.

The

firstEntry

is

used

to

get

to

the

first

EimTargetIdentity

structure

in

the

linked

list.

The

number

of

completed

EimTargetIdentity

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimTargetIdentity

structures

as

will

fit.

It

can

also

contain

a

partial

EimTargetIdentity

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API.

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API.

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API.

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API.

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimTargetIdentity

structure

follows:

typedef

struct

EimTargetIdentity

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure.

*/

EimListData

userName;

/*

User

name

*/

}

EimTargetIdentity;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimGetTargetFromSource”

on

page

190

eimGetTargetFromIdentifier

Chapter

9.

EIM

APIs

185

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping-lookup

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

or

identifier

not

found

or

insufficient

access

to

EIM

data.

EIMERR_IDNAME_AMBIGUOUS

(20)

More

than

one

EIM

identifier

was

found

that

matches

the

requested

Identifier

name.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimGetTargetFromIdentifier

186

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

EMVSERR

An

MVS

environment

or

internal

error

has

occurred.

EIMERR_ZOS_DATA_CONVERSION

(6011)

Error

occurred

when

converting

data

between

code

pages.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOSYS

EIM

is

not

configured

EIMERR_NOTCONFIG

(30)

(Only

z/OS

returns

this

value.)

EIM

could

not

locate

the

registry

name.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

gets

the

list

of

users

in

the

target

registry,

MyRegistry,

that

is

associated

with

the

specified

identifier:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

eimGetTargetFromIdentifier

Chapter

9.

EIM

APIs

187

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[4000];

EimList

*

list

=

(EimList

*

)

listData;

EimIdentifierInfo

x;

/*

Set

up

error

structure.

*/

Memset(eimerr,

0x00,

200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Set

up

identifier

information

*/

x.idtype

=

EIM_UNIQUE_NAME;

x.id.uniqueName

=

"mjones";

if

(0

!=

(rc

=

eimGetTargetFromIdentifier(&handle,

&x,

"MyRegistry",

NULL,

4000,

list,

err)))

{

printf("Get

Target

from

identifier

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimTargetIdentity

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

eimGetTargetFromIdentifier

188

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimTargetIdentity

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("target

user",

entry,

offsetof(EimTargetIdentity,

userName));

/*

advance

to

next

entry

*/

entry

=

(EimTargetIdentity

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimGetTargetFromIdentifier

Chapter

9.

EIM

APIs

189

eimGetTargetFromSource

Purpose

Gets

the

target

identity

or

identities

associated

with

the

source

identity

(as

defined

by

source

registry

name

and

source

registry

user).

This

is

known

as

a

mapping

lookup

operation

--

from

the

known

source

information

this

API

returns

the

user

for

this

target

registry.

Format

#include

<eim.h>

int

eimGetTargetFromSource(EimHandle

*

eim,

char

*

sourceRegistryName,

char

*

sourceRegistryUserName,

char

*

targetRegistryName,

char

*

additionalInformation,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

sourceRegistryName

(Input)

The

source

registry

for

this

lookup

operation.

A

null

value

for

the

string

causes

the

sevice

to

use

the

system

default

local

registry

name

from

the

instorage

copy

of

the

registry

name.

sourceRegistryUserName

(Input)

The

source

user

name

for

this

lookup

operation.

The

registry

user

name

should

begin

with

a

non-blank

character.

targetRegistryName

(Input)

The

target

registry

for

this

lookup

operation.

A

null

value

for

the

string

causes

the

sevice

to

use

the

system

default

local

registry

name

from

the

instorage

copy

of

the

registry

name.

additionalInfo

(Input)

Additional

information

to

use

as

selection

criteria

for

this

operation.

This

can

be

NULL.

This

filter

data

can

contain

the

wild

card

character,

an

asterisk

(*).

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

Entries

are

returned

when

the

user

is

a

member

of

the

required

EIM

access

group

and

the

source

and

target

registries

exist.

When

the

user

is

not

a

member

of

the

required

EIM

access

group

or

the

target

registry

does

not

exist,

the

return

value

is

zero

and

no

entries

are

returned.

The

EimList

structure

follows:

eimGetTargetFromSource

190

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimTargetIdentity

structure

follows:

typedef

struct

EimTargetIdentity

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

userName;

/*

User

name

*/

}

EimTargetIdentity;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimGetTargetFromIdentifier”

on

page

184

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

mapping-lookup

administrator

v

EIM

registry

X

administrator

(for

the

source

and

target

registries)

eimGetTargetFromSource

Chapter

9.

EIM

APIs

191

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

If

a

target

user

ID

is

not

returned

in

the

listData

and

associations

are

defined

between

the

source

registry

user

ID

and

the

target

registry,

ensure

the

user

specified

on

the

eimConnect

or

eimConnectToMaster

is

a

member

of

the

required

EIM

access

group.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH(6001)

Job

Step

TCB

is

not

APF_AUTHORIZED.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Source

registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

the

bind

user

specified

on

the

EIM

connect

API

is

only

a

member

of

the

target

registry’s

EIM

registry

X

administrator

access

group.

If

a

target

user

ID

is

not

returned

in

the

listData

and

associations

are

defined

between

the

source

registry

user

ID

and

the

target

registry,

ensure

the

user

specified

on

the

eimConnect

or

eimConnectToMaster

is

a

member

of

the

required

EIM

access

group.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

EMVSERR

An

MVS

environment

or

internal

error

has

occurred.

EIMERR_ZOS_DATA_CONVERSION

(6011)

Error

occurred

when

converting

data

between

code

pages.

eimGetTargetFromSource

192

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

Return

Value

Meaning

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOSYS

EIM

is

not

configured

EIMERR_NOTCONFIG

(30)

(Only

z/OS

returns

this

value.)

EIM

could

not

locate

the

registry

name.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

gets

the

target

identity

that

is

associated

with

the

source

information:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[4000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

Memset(eimerr,

0x00,

200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

eimGetTargetFromSource

Chapter

9.

EIM

APIs

193

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

target

identity

*/

if

(0

!=

(rc

=

eimGetTargetFromSource(&handle,

"kerberosRegistry",

"mjjones",

"MyRegistry",

NULL,

4000,

list,

err)))

{

printf("Get

Target

from

source

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimTargetIdentity

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimTargetIdentity

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("target

user",

entry,

offsetof(EimTargetIdentity,

userName));

/*

advance

to

next

entry

*/

entry

=

(EimTargetIdentity

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

eimGetTargetFromSource

194

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimGetTargetFromSource

Chapter

9.

EIM

APIs

195

eimListAccess

Purpose

Lists

the

users

that

have

the

specified

EIM

access

type.

Format

#include

<eim.h>

int

eimListAccess(EimHandle

*

eim,

enum

EimAccessType

accessType,

char

*

registryName,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

accessType

(Input)

The

type

of

access

to

list.

Valid

values

are:

EIM_ACCESS_ADMIN

(0)

Administrative

authority

to

the

entire

EIM

domain.

EIM_ACCESS_REG_ADMIN

(1)

Administrative

authority

to

all

registries

in

the

EIM

domain.

EIM_ACCESS_REGISTRY

(2)

Administrative

authority

to

the

registry

specified

in

the

registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN

(3)

Administrative

authority

to

all

of

the

identifiers

in

the

EIM

domain.

EIM_ACCESS_MAPPING_LOOKUP

(4)

Authority

to

perform

mapping

lookup

operations.

registryName

(Input)

The

name

of

the

EIM

registry

for

which

to

list

access.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

If

eimAccessType

is

anything

other

than

EIM_ACCESS_REGISTRY,

this

paramater

must

be

null.

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimAccess

structures.

The

firstEntry

is

used

to

get

to

the

first

EimAccess

structures

in

the

linked

list.

The

number

of

completed

eimListAccess

196

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

EimAccess

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimAccess

structures

as

will

fit.

It

can

also

contain

a

partial

EimAccess

structures.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimAccess

structure

follows:

typedef

struct

EimAccess

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

user;

/*

User

with

access.

This

data

will

be

in

the

format

of

the

DN

for

for

access

id.

*/

}

EimAccess;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddAccess”

on

page

98

v

“eimListUserAccess”

on

page

239

v

“eimQueryAccess”

on

page

246

v

“eimRemoveAccess”

on

page

250

eimListAccess

Chapter

9.

EIM

APIs

197

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_REG_MUST_BE_NULL

(55)

Registry

name

must

be

NULL

when

access

type

is

not

EIM_ACCESS_REGISTRY.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

eimListAccess

198

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

lists

all

users

with

access

to

the

EIM

Adminstrator

access

group:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

List

all

users

with

this

access

*/

if

(0

!=

(rc

=

eimListAccess(&handle,

EIM_ACCESS_ADMIN,

NULL,

1000,

eimListAccess

Chapter

9.

EIM

APIs

199

list,

err)))

{

printf("List

access

error

=

%d\n",

rc);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimAccess

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimAccess

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("Access

user",

entry,

offsetof(EimAccess,

user));

/*

advance

to

next

entry

*/

entry

=

(EimAccess

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

eimListAccess

200

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimListAssociations

Purpose

Returns

a

list

of

associations

for

a

given

EIM

identifier.

You

can

use

this

to

find

all

of

the

associated

identities

for

an

individual

in

the

enterprise.

Format

#include

<eim.h>

int

eimListAssociations(EimHandle

*

eim,

enum

EimAssociationType

associationType,

EimIdentifierInfo

*

idName,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

associationType

(Input)

The

type

of

association

to

list.

Valid

values

are:

EIM_ALL_ASSOC

(0)

List

all

associations.

EIM_TARGET

(1)

List

target

associations.

EIM_SOURCE

(2)

List

source

associations.

EIM_SOURCE_AND_TARGET

(3)

List

both

source

and

target

associations.

EIM_ADMIN

(4)

List

administrative

associations.

idName

(Input)

A

structure

that

contains

the

identifier

name

indicating

the

associations

to

list.

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

EIM_UNIQUE_NAME

finds

at

most

one

matching

identifier.

EIM_NAME

results

in

an

error

if

your

EIM

domain

has

more

than

one

identifier

containing

the

same

name.

eimListAssociations

Chapter

9.

EIM

APIs

201

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

Minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

EimList

structure.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimAssociation

structures.

The

firstEntry

field

in

the

EimList

structure

is

used

to

get

to

the

first

EimAssociation

structure

in

the

linked

list.

The

number

of

completed

EimAssociation

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimAssociation

structures

as

will

fit.

It

can

also

contain

a

partial

EimAssociation

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimAssociation

structure

follows:

typedef

struct

EimAssociation

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

enum

EimAssociationType

associationType;

/*

Type

of

association

*/

EimListData

registryType;

/*

Registry

type

*/

EimListData

registryName;

/*

Registry

name

*/

EimListData

registryUserName;

/*

Registry

user

name

*/

}

EimAssociation;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

eimListAssociations

202

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Related

Information

See

also

the

following:

v

“eimAddAssociation”

on

page

106

v

“eimGetAssociatedIdentifiers”

on

page

168

v

“eimRemoveAssociation”

on

page

254

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping

lookup

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Identifier

name

is

not

valid.

EIMERR_IDNAME_AMBIGUOUS

(20)

More

than

one

EIM

identifier

was

found

that

matches

the

requested

Identifier

name.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimListAssociations

Chapter

9.

EIM

APIs

203

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_ASSOC_TYPE_INVAL

(4)

Association

type

is

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

lists

the

associations

for

an

identifier:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printAssociationType(int

type);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[4000];

EimList

*

list

=

(EimList

*

)

listData;

EimIdentifierInfo

x;

/*

Set

up

error

structure.

*/

eimListAssociations

204

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Memset(eimerr,

0x00,

200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Set

up

identifier

information

*/

x.idtype

=

EIM_UNIQUE_NAME;

x.id.uniqueName

=

"mjones";

/*

Get

associations

for

this

identifier

*/

if

(0

!=

(rc

=

eimListAssociations(&handle,

EIM_ALL_ASSOC,

&x,

4000,

list,

err)))

{

printf("List

Association

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimAssociation

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimAssociation

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

eimListAssociations

Chapter

9.

EIM

APIs

205

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Association

type

*/

printAssociationType(entry->associationType);

/*

Print

out

results

*/

printListData("Registry

Type",

entry,

offsetof(EimAssociation,

registryType));

printListData("Registry

Name",

entry,

offsetof(EimAssociation,

registryName));

printListData("Registry

User

Name",

entry,

offsetof(EimAssociation,

registryUserName));

/*

advance

to

next

entry

*/

entry

=

(EimAssociation

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printAssociationType(int

type)

{

switch(type)

{

case

EIM_TARGET:

printf("

Target

Association.\n");

break;

case

EIM_SOURCE:

printf("

Source

Association.\n");

break;

case

EIM_ADMIN:

printf("

Admin

Association.\n");

break;

default:

printf("ERROR

-

unknown

association

type.\n");

break;

}

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimListAssociations

206

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimListDomains

Purpose

Lists

information

for

a

single

EIM

domain

or

for

all

EIM

domains

that

are

stored

on

an

LDAP

server.

To

list

a

single

domain,

the

ldapURL

parameter

must

contain

the

distinguished

name

of

the

EIM

domain.

To

list

all

domains

stored

on

an

LDAP

server,

omit

the

distinguished

name

of

the

EIM

domain

from

the

ldapURL

parameter.

Format

#include

<eim.h>

int

eimListDomains(char

*

ldapURL,

EimConnectInfo

connectInfo,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

host

information.

This

parameter

is

required.

This

URL

has

the

following

format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.

If

not

specified,

the

default

LDAP

or

LDAPS

ports

will

be

used.)

dn

Distinguished

name

of

the

domain

to

list.

If

you

do

not

specify

DN,

then

eimListDomains

returns

all

domains

stored

on

an

LDAP

server.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

connectInfo

(Input)

Connect

information.

This

parameter

provides

the

information

required

to

bind

to

LDAP.

If

the

system

is

configured

to

connect

to

a

secure

port,

EimSSLInfo

is

required.

For

the

EIM_SIMPLE

connect

type,

the

creds

field

should

contain

the

EimSimpleConnectInfo

structure

with

a

binddn

and

password.

EimPasswordProtect

determines

the

level

of

password

protection

on

the

LDAP

bind.

EIM_PROTECT_NO

(0)

The

clear-text

password

is

sent

on

the

bind.

EIM_PROTECT_CRAM_MD5

(1)

The

protected

password

is

sent

on

the

bind.

eimListDomains

Chapter

9.

EIM

APIs

207

|
|

|

|

|

|
|
|
|

||
|

|

|
|

|
|

|

|
|

|
|

The

server

side

must

support

cram-md5

protocol

to

send

the

protected

password.

EIM_PROTECT_CRAM_MD5_OPTIONAL

(2)

The

protected

password

is

sent

on

the

bind

if

the

cram-md5

protocol

is

supported.

Otherwise,

the

clear-text

password

is

sent.

For

EIM_KERBEROS,

the

default

logon

credentials

are

used.

The

kerberos_creds

field

must

be

NULL.

For

EIM_CLIENT_AUTHENTICATION,

the

creds

field

is

ignored.

The

ssl

field

must

point

to

a

valid

EimSSLInfo

structure.

The

keyring

field

is

required

in

the

EimSSLInfo

structure.

It

can

be

the

name

of

a

System

SSL

key

database

file

or

a

RACF

keyring

name.

The

keyring_pw

field

is

required

when

the

keyring

is

the

name

of

a

System

SSL

key

database

field.

The

certificateLabel

field

is

optional.

If

it

is

NULL

the

default

certificate

in

the

keyring

is

used.

The

structure

layouts

follow:

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

list

of

domains.

Minimum

size

required

is

20

bytes.

The

API

returns

the

number

of

bytes

available

for

the

entire

list

and

as

much

data

as

space

has

been

provided.

eimListDomains

208

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|

|
|
|
|

|
|

|
|
|
|
|
|

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimDomain

structures.

The

firstEntry

field

in

the

EimList

Structure

is

used

to

get

to

the

first

EimDomain

structure

in

the

linked

list.

The

number

of

completed

EimDomain

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimDomain

structures

as

will

fit.

It

can

also

contain

a

partial

EimDomain

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimDomain

structure

follows:

typedef

struct

EimDomain

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Domain

name

*/

EimListData

DN;

/*

Distinguished

name

for

the

domain

*/

EimListData

description;

/*

Description

*/

}

EimDomain;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimChangeDomain”

on

page

119

v

“eimCreateDomain”

on

page

151

eimListDomains

Chapter

9.

EIM

APIs

209

v

“eimDeleteDomain”

on

page

159

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NODOMAIN

(24)

EIM

domain

not

found

or

insufficient

access

to

EIM

data.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

eimListDomains

210

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EINVAL

Input

parameter

was

not

valid.

EIMERR_CONN_INVAL

(54)

Connection

type

is

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_NOT_SECURE

(32)

The

system

is

not

configured

to

connect

to

a

secure

port.

Connection

type

of

EIM_CLIENT_AUTHENTICATION

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PROTECT_INVAL

(22)

The

protect

parameter

in

EimSimpleConnectInfo

is

not

valid.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

EIMERR_SSL_REQ

(42)

The

system

is

configured

to

connect

to

a

secure

port.

EimSSLInfo

is

required.

EIMERR_URL_NODOMAIN

(46)

URL

has

no

domain.

EIMERR_URL_NOHOST

(47)

URL

does

not

have

a

host.

EIMERR_URL_NOTLDAP

(49)

URL

does

not

begin

with

ldap.

EIMERR_CREDS_MUST_BE_NULL

(58)

The

connection

info

parameter

of

the

EIM

API

does

not

have

a

NULL

value

for

the

creds

field

in

the

connection

info

structure.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTSUP

Connection

type

is

not

supported.

EIMERR_CONN_NOTSUPP

(12)

Connection

type

is

not

supported.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

lists

the

information

for

the

specified

EIM

domain:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

eimListDomains

Chapter

9.

EIM

APIs

211

||
|
|

||
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

EimRC

*

err;

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

char

*

ldapURL

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

EimConnectInfo

con;

/*

Set

up

connection

information

*/

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

/*

Get

info

for

specified

domain

*/

if

(0

!=

(rc

=

eimListDomains(ldapURL,

con,

1000,

list,

err)))

{

printf("List

domain

error

=

%d\n",

rc);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimDomain

*

entry;

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimDomain

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("Domain

Name",

entry,

offsetof(EimDomain,

name));

printListData("Domain

DN",

entry,

offsetof(EimDomain,

dn));

printListData("description",

eimListDomains

212

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

entry,

offsetof(EimDomain,

description));

/*

advance

to

next

entry

*/

entry

=

(EimDomain

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimListDomains

Chapter

9.

EIM

APIs

213

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

eimListIdentifiers

Purpose

Returns

a

list

of

identifiers

in

the

EIM

domain.

idName

can

be

used

to

filter

the

results

returned.

Format

#include

<eim.h>

int

eimListIdentifiers(EimHandle

*

eim,

EimIdentifierInfo

*

idName,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

idName

(Input)

A

structure

that

contains

the

name

for

this

identifier.

This

parameter

can

be

NULL;

in

this

case

the

API

returns

all

identifiers

in

the

domain.

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

There

is

no

guarantee

that

name

will

find

a

unique

identifier.

Therefore,

using

name

can

result

the

return

of

multiple

identifiers.

The

id

values

uniqueName,

entryUUID

and

name

can

contain

the

wild

card

character,

an

asterisk

(*).

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

EimList

structure.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimIdentifier

structures.

The

firstEntry

field

in

the

EimList

structure

is

used

to

get

to

the

first

EimIdentifier

structure

in

the

linked

list.

The

number

of

completed

EimIdentifier

structures

is

returned

in

entriesReturned.

The

bytesReturned

eimListIdentifiers

214

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimIdentifier

structures

as

will

fit.

It

can

also

contain

a

partial

EimIdentifier

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimIdentifier

structure

follows:

typedef

struct

EimIdentifier

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

uniquename;

/*

Unique

name

*/

EimListData

description;

/*

Description

*/

EimListData

entryUUID;

/*

UUID

*/

EimSubList

names;

/*

EimIdentifierName

sublist

*/

EimSubList

additionalInfo;

/*

EimAddlInfo

sublist

*/

}

EimIdentifier;

Identifiers

might

have

defined

several

name

attributes

as

well

as

several

additional

information

attributes.

In

the

EimIdentifier

structure,

the

names

EimSubList

gives

addressability

to

a

linked

list

of

EimIdentifierName

structures.

The

EimIdentifierName

follows:

typedef

struct

EimIdentifierName

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Name

*/

}

EimIdentifierName;

The

additionalInfo

EimSubList

gives

addressability

to

a

linked

list

of

EimAddlInfo

structures.

The

EimAddlInfo

structure

follows:

typedef

struct

EimAddlInfo

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

addlInfo;

/*

Additional

info

*/

}

EimAddlInfo;

The

EimSubList

structure

follows:

typedef

struct

EimSubList

{

unsigned

int

listNum;

/*

Number

of

entries

in

the

list

*/

unsigned

int

disp;

/*

Displacement

to

sublist.

This

byte

offset

is

relative

to

the

eimListIdentifiers

Chapter

9.

EIM

APIs

215

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimSubList;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddIdentifier”

on

page

111

v

“eimChangeIdentifier”

on

page

124

v

“eimGetAssociatedIdentifiers”

on

page

168

v

“eimRemoveIdentifier”

on

page

259

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping

lookup

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

eimListIdentifiers

216

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Identifier

name

is

not

valid.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

listing

all

EIM

identifiers:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

eimListIdentifiers

Chapter

9.

EIM

APIs

217

|
|

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[4000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

all

identifiers

*/

if

(0

!=

(rc

=

eimListIdentifiers(&handle,

NULL,

4000,

list,

err)))

{

printf("List

identifiers

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimIdentifier

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

eimListIdentifiers

218

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimIdentifier

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("Unique

name",

entry,

offsetof(EimIdentifier,

uniquename));

printListData("description",

entry,

offsetof(EimIdentifier,

description));

printListData("entryUUID",

entry,

offsetof(EimIdentifier,

entryUUID));

printSubListData("Names",

entry,

offsetof(EimIdentifier,

names));

printSubListData("Additional

Info",

entry,

offsetof(EimIdentifier,

additionalInfo));

/*

advance

to

next

entry

*/

entry

=

(EimIdentifier

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset)

{

int

i;

EimSubList

*

subList;

EimAddlInfo

*

subentry;

/*

Address

the

EimSubList

object

*/

subList

=

(EimSubList

*)((char

*)entry

+

offset);

if

(subList->listNum

>

0)

{

subentry

=

(EimAddlInfo

*)((char

*)entry

+

subList->disp);

for

(i

=

0;

i

<

subList->listNum;

i++)

{

/*

Print

out

results

*/

printListData(fieldName,

subentry,

offsetof(EimAddlInfo,

addlInfo));

/*

advance

to

next

entry

*/

subentry

=

(EimAddlInfo

*)((char

*)subentry

+

subentry->nextEntry);

}

}

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

eimListIdentifiers

Chapter

9.

EIM

APIs

219

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimListIdentifiers

220

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimListRegistries

Purpose

Lists

the

user

registries

participating

in

the

EIM

domain.

You

can

use

the

registryType,

registryName

and

registryKind

parameters

to

filter

the

results

returned.

Format

#include

<eim.h>

int

eimListRegistries(EimHandle

*

eim,

char

*

registryName,

char

*

registryType,

enum

EimRegistryKind

registryKind,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

EIM

registry

to

list.

The

name

can

contain

the

wild

card

character,

an

asterisk

(*).

This

is

used

as

a

filter

to

determine

which

registries

to

return.

This

parameter

can

be

NULL;

in

this

case,

no

filtering

is

done

by

name.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

registryType

(Input)

A

string

form

of

an

OID

that

represents

the

registry

type

and

a

user

name

normalization

method.

The

normalization

method

is

necessary

because

some

registries

are

case-independent

and

others

are

case-dependent.

EIM

uses

this

information

to

make

sure

the

appropriate

search

occurs

for

registry

user

names.

The

predefined

registry

types

that

EIM

provides

include

the

following:

v

EIM_REGTYPE_RACF

v

EIM_REGTYPE_OS400

v

EIM_REGTYPE_KERBEROS_EX

v

EIM_REGTYPE_KERBEROS_IG

v

EIM_REGTYPE_AIX

v

EIM_REGTYPE_NDS

v

EIM_REGTYPE_LDAP

v

EIM_REGTYPE_POLICY_DIRECTOR

v

EIM_REGTYPE_WIN2K

You

can

also

create

your

own

registry

type.

This

parameter

can

also

be

NULL;

in

this

case,

the

API

returns

all

associations.

registryKind

(Input)

The

kind

of

registry

to

list.

Valid

values

are:

eimListRegistries

Chapter

9.

EIM

APIs

221

|

|

|

|

|

|

|

|

|

EIM_ALL_REGISTRIES

(0)

EIM

returns

both

system

and

application

registries.

EIM_SYSTEM_REGISTRY

(1)

EIM

returns

only

system

registries.

EIM_APPLICATION_REGISTRY

(2)

EIM

returns

only

application

registries.

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provids

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimRegistry

structures.

The

firstEntry

field

in

the

EimList

structure

is

used

to

get

to

the

first

EimRegistry

structure

in

the

linked

list.

The

number

of

completed

EimRegistry

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimRegistry

structures

as

will

fit.

It

can

also

contain

a

partial

EimRegistry

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimRegistry

structure

follows:

typedef

struct

EimRegistry

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

enum

EimRegistryKind

kind;

/*

Kind

of

registry

*/

EimListData

name;

/*

Registry

name

*/

EimListData

type;

/*

Registry

type

*/

EimListData

description;

/*

Description

*/

EimListData

entryUUID;

/*

Entry

UUID

*/

EimListData

URI;

/*

URI

*/

EimListData

systemRegistryName;

/*

System

registry

name

*/

EimSubList

registryAlias;

/*

EimRegistryAlias

sublist

*/

}

EimRegistry;

Registries

can

have

a

number

of

defined

aliases.

In

the

EimRegistry

structure,

the

registryAlias

EimSubList

gives

addressability

to

the

first

EimRegistryAlias

structure.

The

EimRegistryAlias

structure

follows:

typedef

struct

EimRegistryAlias

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

eimListRegistries

222

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

start

of

this

structure

*/

EimListData

type;

/*

Alias

type

*/

EimListData

value;

/*

Alias

value

*/

}

EimRegistryAlias;

The

EimSubList

structure

follows:

typedef

struct

EimSubList

{

unsigned

int

listNum;

/*

Number

of

entries

in

the

list

*/

unsigned

int

disp;

/*

Displacement

to

sublist.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure

i.e.

the

structure

containing

this

structure

*/

}

EimSubList;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddApplicationRegistry”

on

page

102

v

“eimAddSystemRegistry”

on

page

115

v

“eimChangeRegistry”

on

page

128

v

“eimRemoveRegistry”

on

page

262

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping

lookup

The

list

returned

(which

can

be

empty)

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

eimListRegistries

Chapter

9.

EIM

APIs

223

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_REGKIND_INVAL

(38)

Requested

registry

kind

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

lists

all

registries

found:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

void

printRegistryKind(int

kind);

eimListRegistries

224

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

void

printAliasSubList(void

*

entry,

int

offset);

int

main

(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[10000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

all

registries

*/

if

(0

!=

(rc

=

eimListRegistries(&handle,

NULL,

NULL,

EIM_ALL_REGISTRIES,

10000,

list,

err)))

{

printf("List

registries

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

eimListRegistries

Chapter

9.

EIM

APIs

225

EimRegistry

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimRegistry

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Registry

kind

*/

printRegistryKind(entry->kind);

/*

Print

out

results

*/

printListData("Registry

Name",

entry,

offsetof(EimRegistry,

name));

printListData("Registry

Type",

entry,

offsetof(EimRegistry,

type));

printListData("description",

entry,

offsetof(EimRegistry,

description));

printListData("entryUUID",

entry,

offsetof(EimRegistry,

entryUUID));

printListData("URI",

entry,

offsetof(EimRegistry,

URI));

printListData("system

registry

name",

entry,

offsetof(EimRegistry,

systemRegistryName));

printAliasSubList(entry,

offsetof(EimRegistry,

registryAlias));

/*

advance

to

next

entry

*/

entry

=

(EimRegistry

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printRegistryKind(int

kind)

{

switch(kind)

{

case

EIM_SYSTEM_REGISTRY:

printf("

System

Registry.\n");

break;

case

EIM_APPLICATION_REGISTRY:

printf("Application

Registry.\n");

break;

default:

printf("ERROR

-

unknown

registry

kind.\n");

break;

}

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

eimListRegistries

226

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

void

printAliasSubList(void

*

entry,

int

offset)

{

int

i;

EimSubList

*

subList;

EimRegistryAlias

*

subentry;

/*

Address

the

EimSubList

object

*/

subList

=

(EimSubList

*)((char

*)entry

+

offset);

if

(subList->listNum

>

0)

{

subentry

=

(EimRegistryAlias

*)((char

*)entry

+

subList->disp);

for

(i

=

0;

i

<

subList->listNum;

i++)

{

/*

Print

out

results

*/

printListData("Registry

alias

type",

subentry,

offsetof(EimRegistryAlias,

type));

printListData("Registry

alias

value",

subentry,

offsetof(EimRegistryAlias,

value));

/*

advance

to

next

entry

*/

subentry

=

(EimRegistryAlias

*)((char

*)subentry

+

}

}

}

eimListRegistries

Chapter

9.

EIM

APIs

227

eimListRegistryAliases

Purpose

Returns

a

list

of

all

the

aliases

defined

for

a

particular

registry.

Format

#include

<eim.h>

int

eimListRegistryAliases(EimHandle

*

eim,

char

*

registryName,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

registry

for

which

to

list

aliases.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

data

to

return.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimRegistryAlias

structures.

The

firstEntry

field

in

the

EimList

structure

is

used

to

get

to

the

first

EimRegistryAlias

structure

in

the

linked

list.

The

number

of

completed

EimRegistryAlias

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimRegistryAlias

structures

as

will

fit.

It

can

also

contain

a

partial

EimRegistryAlias

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

eimListRegistryAliases

228

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

The

EimRegistryAlias

structure

follows:

typedef

struct

EimRegistryAlias

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

type;

/*

Alias

type

*/

EimListData

value;

/*

Alias

value

*/

}

EimRegistryAlias;

The

EimListData

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimChangeRegistryAlias”

on

page

132

v

“eimGetRegistryNameFromAlias”

on

page

179

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping

lookup

The

returned

list

contains

only

the

information

that

the

user

has

authority

to

access,

meaning

it

could

be

empty.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

eimListRegistryAliases

Chapter

9.

EIM

APIs

229

Return

Value

Meaning

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

lists

all

aliases

for

the

specified

registry:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

eimListRegistryAliases

230

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=administrator";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

all

aliases

for

the

registry

*/

if

(0

!=

(rc

=

eimListRegistryAliases(&handle,

"MyRegistry",

1000,

list,

err)))

{

printf("List

registry

aliases

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimRegistryAlias

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

eimListRegistryAliases

Chapter

9.

EIM

APIs

231

printf("\n");

entry

=

(EimRegistryAlias

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

/*

Print

out

results

*/

printListData("Registry

Alias

Type",

entry,

offsetof(EimRegistryAlias,

type));

printListData("Registry

Alias

Value",

entry,

offsetof(EimRegistryAlias,

value));

/*

advance

to

next

entry

*/

entry

=

(EimRegistryAlias

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimListRegistryAliases

232

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimListRegistryUsers

Purpose

Lists

the

users

in

a

particular

registry

that

have

target

associations

defined.

Format

#include

<eim.h>

int

eimListRegistryUsers(EimHandle

*

eim,

char

*

registryName,

char

*

registryUserName,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

registry

that

contains

this

user.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

registryUserName

(Input)

The

name

of

the

user

to

list

in

this

registry.

NULL

indicates

listing

all

users.

The

registry

user

name

should

begin

with

a

non-blank

character.

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

EimList

structure.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimRegistryUser

structures.

The

firstEntry

field

in

the

EimList

structure

is

used

to

get

to

the

first

EimRegistryUser

structure

in

the

linked

list.

The

number

of

completed

EimRegistryUser

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimRegistryUser

structures

as

will

fit.

It

can

also

contain

a

partial

EimRegistryUser

structure.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

eimListRegistryUsers

Chapter

9.

EIM

APIs

233

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimRegistryUser

structure

follows:

typedef

struct

EimRegistryUser

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure.

*/

EimListData

registryUserName;

/*

Name

*/

EimListData

description;

/*

Description

*/

EimSubList

additionalInfo;

/*

EimAddlInfo

sublist

*/

}

EimRegistryUser;

Registry

users

might

have

defined

several

additional

attributes.

In

the

EimRegistryUser

structure,

additionalInfo

gives

addressability

to

the

first

EimAddlInfo

structure

that

contains

a

linked

list

of

attributes.

The

EimAddlInfo

structure

follows:

typedef

struct

EimAddlInfo

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure.

*/

EimListData

addlInfo;

/*

Additional

info

*/

}

EimAddlInfo;

The

EimSubList

structure

follows:

typedef

struct

EimSubList

{

unsigned

int

listNum;

/*

Number

of

entries

in

the

list

*/

unsigned

int

disp;

/*

Displacement

to

sublist.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimSubList;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimChangeRegistryUser”

on

page

136

eimListRegistryUsers

234

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

v

EIM

registries

administrator

v

EIM

identifiers

administrator

v

EIM

registry

X

administrator

v

EIM

mapping

lookup

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

Check

the

entriesReturned

member

of

the

listData

to

determine

if

any

entries

were

returned.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

eimListRegistryUsers

Chapter

9.

EIM

APIs

235

Return

Value

Meaning

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

lists

all

users

in

the

specified

registry:

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimConnectInfo

con;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

eimListRegistryUsers

236

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Get

registry

user

*/

if

(0

!=

(rc

=

eimListRegistryUsers(&handle,

"MyRegistry",

NULL,

1000,

list,

err)))

{

printf("List

registry

users

error

=

%d\n",

rc);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimRegistryUser

*

entry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

entry

=

(EimRegistryUser

*)((char

*)list

+

list->firstEntry);

for

(i

=

0;

i

<

list->entriesReturned;

i++)

{

printf("\n");

printf("===============\n");

printf("Entry

%d.\n",

i);

/*

Print

out

results

*/

printListData("Registry

user

name",

entry,

offsetof(EimRegistryUser,

registryUserName));

printListData("description",

entry,

offsetof(EimRegistryUser,

description));

printSubListData("Additional

information",

entry,

offsetof(EimRegistryUser,

additionalInfo));

/*

advance

to

next

entry

*/

entry

=

(EimRegistryUser

*)((char

*)entry

+

entry->nextEntry);

}

printf("\n");

}

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset)

eimListRegistryUsers

Chapter

9.

EIM

APIs

237

{

int

i;

EimSubList

*

subList;

EimAddlInfo

*

subentry;

/*

Address

the

EimSubList

object

*/

subList

=

(EimSubList

*)((char

*)entry

+

offset);

if

(subList->listNum

>

0)

{

subentry

=

(EimAddlInfo

*)((char

*)entry

+

subList->disp);

for

(i

=

0;

i

<

subList->listNum;

i++)

{

/*

Print

out

results

*/

printListData(fieldName,

subentry,

offsetof(EimAddlInfo,

addlInfo));

/*

advance

to

next

entry

*/

subentry

=

(EimAddlInfo

*)((char

*)subentry

+

subentry->nextEntry);

}

}

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimListRegistryUsers

238

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimListUserAccess

Purpose

Lists

the

access

groups

of

which

this

user

is

a

member.

Format

#include

<eim.h>

int

eimListUserAccess(EimHandle

*

eim,

EimAccessUser

*

accessUser,

unsigned

int

lengthOfListData,

EimList

*

listData,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

accessUser

(Input)

A

structure

that

contains

the

user

information

for

which

to

retrieve

access.

EIM_ACCESS_DN

Indicates

a

distinguished

name

defined

in

an

LDAP

directory

that

can

be

used

to

bind

to

the

EIM

domain.

EIM_ACCESS_LOCAL_USER

(z/OS

does

not

support

this;

for

RACF

user

IDs,

use

EIM_ACCESS_DN

instead.)

EIM_ACCESS_LOCAL_USER

indicates

a

local

user

name

on

the

system

where

the

API

runs.

EIM

converts

the

local

user

name

to

the

appropriate

access

ID

for

this

system.

EIM_ACCESS_KERBEROS

Indicates

a

Kerberos

principal.

EIM

converts

the

Kerberos

principal

to

the

appropriate

access

ID,

for

example,

converting

petejones@therealm

to

ibm-kn=petejones@threalm.

(To

connect

to

an

EIM

domain

using

Kerberos

information,

you

need

to

do

so

from

a

non-z/OS

platform.)

The

EimAccessUser

structure

layout

follows:

enum

EimAccessUserType

{

EIM_ACCESS_DN,

EIM_ACCESS_KERBEROS,

EIM_ACCESS_LOCAL_USER

};

typedef

struct

EimAccessUser

{

union

{

char

*

DN;

char

*

kerberosPrincipal;

eimListUserAccess

Chapter

9.

EIM

APIs

239

char

*

localUser;

}

user;

enum

EimAccessUserType

userType;

}

EimAccessUser;

lengthOfListData

(Input)

The

number

of

bytes

the

caller

provides

for

the

listData

parameter.

The

minimum

size

required

is

20

bytes.

listData

(Output)

A

pointer

to

the

EimList

structure.

The

EimList

structure

contains

information

about

the

returned

data.

The

data

returned

is

a

linked

list

of

EimUserAccess

structures.

The

firstEntry

field

in

the

EimList

structure

is

used

to

get

to

the

first

eimUserAccess

structure

in

the

linked

list.

The

number

of

completed

EimUserAccess

structures

is

returned

in

entriesReturned.

The

bytesReturned

variable

has

the

number

of

bytes

the

API

used

for

the

returned

entries.

If

the

number

of

entries

returned

is

less

than

the

number

of

entries

available,

the

returned

data

contains

as

many

complete

EimUserAccess

structures

as

will

fit.

It

can

also

contain

a

partial

EimUserAccess

structure,

but

not

a

partial

entry.The

EimList

structure

follows:

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API.

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API.

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API.

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API.

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

The

EimUserAccess

structure

follows:

typedef

struct

EimUserAccess

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure.

*/

enum

EimAccessIndicator

eimAdmin;

enum

EimAccessIndicator

eimRegAdmin;

enum

EimAccessIndicator

eimIdenAdmin;

enum

EimAccessIndicator

eimMappingLookup;

EimSubList

registries;

/*

EimRegistryName

sublist

*/

}

EimUserAccess;

The

registries

EimSubList

gives

addressability

to

a

linked

list

of

EimRegistryName

structures.

The

EimRegistryName

structure

follows:

typedef

struct

EimRegistryName

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure.

*/

EimListData

name;

/*

Name

*/

}

EimRegistryName;

The

EimSubList

structure

follows:

eimListUserAccess

240

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

typedef

struct

EimSubList

{

unsigned

int

listNum;

/*

Number

of

entries

in

the

list

*/

unsigned

int

disp;

/*

Displacement

to

sublist.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimSubList;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

eimrc

(Input)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddAccess”

on

page

98

v

“eimListAccess”

on

page

196

v

“eimRemoveAccess”

on

page

250

v

“eimQueryAccess”

on

page

246

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

The

list

returned

contains

only

the

information

that

the

user

has

authority

to

access.

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

eimListUserAccess

Chapter

9.

EIM

APIs

241

Return

Value

Meaning

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ACCESS_USERTYPE_INVAL

(3)

Access

user

type

is

not

valid.

EIMERR_EIMLIST_SIZE

(16)

Length

of

EimList

is

not

valid.

EimList

must

be

at

least

20

bytes

in

length.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_SPACE

(41)

Unexpected

error

accessing

parameter.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

will

list

the

access

for

the

user

with

distinguished

name

″cn=pete,o=ibm,c=us″.

#include

<eim.h>

#include

<stddef.h>

#include

<stdio.h>

#include

<stdlib.h>

void

printListResults(EimList

*

list);

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset);

void

printListData(char

*

fieldName,

void

*

entry,

int

offset);

int

main(int

argc,

char

*argv[])

{

int

rc;

eimListUserAccess

242

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimAccessUser

user;

EimConnectInfo

con;

char

listData[1000];

EimList

*

list

=

(EimList

*

)

listData;

char

*

ldapHost

=

"ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

con.type

=

EIM_SIMPLE;

con.creds.simpleCreds.protect

=

EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn

=

"cn=admin";

con.creds.simpleCreds.bindPw

=

"secret";

con.ssl

=

NULL;

/*

Create

handle

with

specified

LDAP

URL

*/

if

(0

!=

(rc

=

eimCreateHandle(&handle,

ldapHost,

err)))

{

printf("Create

handle

error

=

%d\n",

rc);

return

-1;

}

/*

Connect

with

specified

credentials

*/

if

(0

!=

(rc

=

eimConnect(&handle,

con,

err)))

{

printf("Connect

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Set

up

access

user

information

*/

user.userType

=

EIM_ACCESS_DN;

user.user.dn

=

"cn=pete,o=ibm,c=us";

/*

Get

user

accesses

*/

if

(0

!=

(rc

=

eimListUserAccess(&handle,

&user,

1000,

list,

err)))

{

printf("List

user

access

error

=

%d\n",

rc);

eimDestroyHandle(&handle,

err);

return

-1;

}

/*

Print

the

results

*/

printListResults(list);

/*

Destroy

the

handle

*/

rc

=

eimDestroyHandle(&handle,

err);

return

0;

}

void

printListResults(EimList

*

list)

{

int

i;

EimUserAccess

*

entry;

eimListUserAccess

Chapter

9.

EIM

APIs

243

EimListData

*

listData;

EimRegistryName

*

registry;

printf("___________\n");

printf("

bytesReturned

=

%d\n",

list->bytesReturned);

printf("

bytesAvailable

=

%d\n",

list->bytesAvailable);

printf("

entriesReturned

=

%d\n",

list->entriesReturned);

printf("

entriesAvailable

=

%d\n",

list->entriesAvailable);

printf("\n");

if

(list->entriesReturned

>

1)

printf("Unexpected

number

of

entries

returned.\n");

entry

=

(EimUserAccess

*)((char

*)list

+

list->firstEntry);

if

(EIM_ACCESS_YES

==

entry->eimAdmin)

printf("

EIM

Admin.\n");

if

(EIM_ACCESS_YES

==

entry->eimRegAdmin)

printf("

EIM

Reg

Admin.\n");

if

(EIM_ACCESS_YES

==

entry->eimIdenAdmin)

printf("

EIM

Iden

Admin.\n");

if

(EIM_ACCESS_YES

==

entry->eimMappingLookup)

printf("

EIM

Mapping

Lookup.\n");

printf("

Registries:\n");

printSubListData("Registry

names",

entry,

offsetof(EimUserAccess,

registries));

printf("\n");

}

void

printSubListData(char

*

fieldName,

void

*

entry,

int

offset)

{

int

i;

EimSubList

*

subList;

EimRegistryName

*

subentry;

/*

Address

the

EimSubList

object

*/

subList

=

(EimSubList

*)((char

*)entry

+

offset);

if

(subList->listNum

>

0)

{

subentry

=

(EimRegistryName

*)((char

*)entry

+

subList->disp);

for

(i

=

0;

i

<

subList->listNum;

i++)

{

/*

Print

out

results

*/

printListData(fieldName,

subentry,

offsetof(EimRegistryName,

name));

/*

advance

to

next

entry

*/

subentry

=

(EimRegistryName

*)((char

*)subentry

+

subentry->nextEntry);

}

}

}

void

printListData(char

*

fieldName,

void

*

entry,

int

offset)

{

EimListData

*

listData;

char

*

data;

int

dataLength;

printf("

%s

=

",fieldName);

/*

Address

the

EimListData

object

*/

listData

=

(EimListData

*)((char

*)entry

+

offset);

eimListUserAccess

244

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

/*

Print

out

results

*/

data

=

(char

*)entry

+

listData->disp;

dataLength

=

listData->length;

if

(dataLength

>

0)

printf("%.*s\n",dataLength,

data);

else

printf("Not

found.\n");

}

eimListUserAccess

Chapter

9.

EIM

APIs

245

eimQueryAccess

Purpose

Queries

to

check

if

the

user

has

the

specified

access.

Format

#include

<eim.h>

int

eimQueryAccess(EimHandle

*

eim,

EimAccessUser

*

accessUser,

enum

EimAccessType

accessType,

char

*

registryName,

unsigned

int

*

accessIndicator,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

accessUser

(Input)

A

structure

that

contains

the

user

information

for

which

to

query

access.

EIM_ACCESS_DN

Indicates

a

distinguished

name

defined

in

an

LDAP

directory

that

you

can

use

to

bind

to

the

EIM

domain.

EIM_ACCESS_LOCAL_USER

(z/OS

does

not

support

this.

Use

EIM_ACCESS_DN

instead.)

It

indicates

a

local

user

name

on

the

system

where

the

API

runs.

The

local

user

name

is

converted

to

the

appropriate

access

ID

for

this

system.

EIM_ACCESS_KERBEROS

Indicates

a

Kerberos

identity.

The

Kerberos

identity

is

converted

to

the

appropriate

access

ID.

For

example,

EIM

converts

petejones@therealm

to

ibm-
kn=petejones@threalm.

(To

connect

to

an

EIM

domain

using

Kerberos

information,

you

need

to

do

so

from

a

non-z/OS

platform.)

The

EimAccessUser

structure

layout

follows:

enum

EimAccessUserType

{

EIM_ACCESS_DN,

EIM_ACCESS_KERBEROS,

EIM_ACCESS_LOCAL_USER

};

typedef

struct

EimAccessUser

{

union

{

char

*

DN;

char

*

kerberosPrincipal;

char

*

localUser;

}

user;

enum

EimAccessUserType

userType;

}

EimAccessUser;

eimQueryAccess

246

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

accessType

(Input)

The

type

of

access

to

check.

Valid

values

are:

EIM_ACCESS_ADMIN

(0)

Administrative

authority

to

the

entire

EIM

domain.

EIM_ACCESS_REG_ADMIN

(1)

Administrative

authority

to

all

registries

in

the

EIM

domain.

EIM_ACCESS_REGISTRY

(2)

Administrative

authority

to

the

registry

specified

in

the

registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN

(3)

Administrative

authority

to

all

of

the

identifiers

in

the

EIM

domain.

EIM_ACCESS_MAPPING_LOOKUP

(4)

Authority

to

perform

mapping

lookup

operations.

registryName

(Input)

The

name

of

the

EIM

registry

for

which

to

check

the

access.

Registry

names

are

case-independent

(not

case-sensitive).

This

parameter

is

used

only

if

accessType

is

EIM_ACCESS_REGISTRY.

If

accessType

is

anything

other

than

EIM_ACCESS_REGISTRY,

this

parameter

must

be

NULL.

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

accessIndicator

(Output)

Indicates

whether

access

is

found.

EIM_ACCESS_NO

(0)

Access

not

found.

EIM_ACCESS_YES

(1)

Access

found.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddAccess”

on

page

98

v

“eimListAccess”

on

page

196

v

“eimListUserAccess”

on

page

239

v

“eimRemoveAccess”

on

page

250

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

eimQueryAccess

Chapter

9.

EIM

APIs

247

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ACCESS_TYPE_INVAL

(2)

Access

type

is

not

valid.

EIMERR_ACCESS_USERTYPE_INVAL

(3)

Access

user

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_REG_MUST_BE_NULL

(55)

Registry

name

must

be

NULL

when

access

type

is

not

EIM_ACCESS_REGISTRY.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

illustrates

a

query

to

see

if

the

distinguished

name

″cn=pete,o=ibm,c=us″

is

a

member

of

the

″EIM

Administrator″

access

group.

eimQueryAccess

248

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimAccessUser

user;

unsigned

int

indicator;

.

.

.

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Set

up

access

user

info

*/

user.userType

=

EIM_ACCESS_DN;

user.user.DN="cn=pete,o=ibm,c=us";

/*

Query

access

for

this

user.

*/

rc

=

eimQueryAccess(&handle,

&user,

EIM_ACCESS_ADMIN,

NULL,

&indicator,

Err);

.

.

.

eimQueryAccess

Chapter

9.

EIM

APIs

249

eimRemoveAccess

Purpose

Removes

the

user

from

an

EIM

access

group.

Format

#include

<eim.h>

int

eimRemoveAccess(EimHandle

*

eim,

EimAccessUser

*

accessUser,

enum

EimAccessType

accessType,

char

*

registryName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

accessUser

(Input)

A

structure

that

contains

the

user

information

from

which

to

remove

access.

EIM_ACCESS_DN

Indicates

a

distinguished

name

defined

in

an

LDAP

directory

that

you

can

use

to

bind

to

the

EIM

domain.

EIM_ACCESS_LOCAL_USER

(z/OS

does

not

support

this.

Use

EIM_ACCESS_DN

instead.)

It

indicates

a

local

user

name

on

the

system

where

the

API

runs.

The

local

user

name

is

converted

to

the

appropriate

access

ID

for

this

system.

EIM_ACCESS_KERBEROS

Indicates

a

Kerberos

identity.

The

Kerberos

identity

is

converted

to

the

appropriate

access

ID.

For

example,

EIM

converts

petejones@therealm

to

ibm-
kn=petejones@threalm.

(To

connect

to

an

EIM

domain

using

Kerberos

information,

you

need

to

do

so

from

a

non-z/OS

platform.)

The

EimAccessUser

structure

layout

follows:

enum

EimAccessUserType

{

EIM_ACCESS_DN,

EIM_ACCESS_KERBEROS,

EIM_ACCESS_LOCAL_USER

};

typedef

struct

EimAccessUser

{

union

{

char

*

DN;

char

*

kerberosPrincipal;

eimRemoveAccess

250

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

char

*

localUser;

}

user;

enum

EimAccessUserType

userType;

}

EimAccessUser;

accessType

(Input)

The

type

of

access

to

remove.

Valid

values

are:

EIM_ACCESS_ADMIN

(0)

Administrative

authority

to

the

entire

EIM

domain.

EIM_ACCESS_REG_ADMIN

(1)

Administrative

authority

to

all

registries

in

the

EIM

domain.

EIM_ACCESS_REGISTRY

(2)

Administrative

authority

to

the

registry

specified

in

the

registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN

(3)

Administrative

authority

to

all

of

the

identifiers

in

the

EIM

domain.

EIM_ACCESS_MAPPING_LOOKUP

(4)

Authority

to

perform

mapping

lookup

operations.

registryName

(Input)

The

name

of

the

registry

from

which

to

remove

access.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

This

parameter

is

used

only

if

accessType

is

EIM_ACCESS_REGISTRY.

If

accessType

is

anything

other

than

EIM_ACCESS_REGISTRY,

this

parameter

must

be

NULL.

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddAccess”

on

page

98

v

“eimListAccess”

on

page

196

v

“eimListUserAccess”

on

page

239

v

“eimQueryAccess”

on

page

246

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

eimRemoveAccess

Chapter

9.

EIM

APIs

251

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ACCESS_TYPE_INVAL

(2)

Access

type

is

not

valid.

EIMERR_ACCESS_USERTYPE_INVAL

(3)

Access

user

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EIMERR_REG_MUST_BE_NULL

(55)

Registry

name

must

be

NULL

when

access

type

is

not

EIM_ACCESS_REGISTRY.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

eimRemoveAccess

252

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Example

The

following

illustrates

removing

the

distinguished

name(DN)

of

a

user

from

the

EIM

Administror

access

group:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimAccessUser

user;

.

.

.

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Set

user

information

*/

user.userType

=

EIM_ACCESS_DN;

user.user.DN="cn=pete,o=ibm,c=us";

/*

Remove

access

for

this

user.

*/

rc

=

eimRemoveAccess(&handle,

&user,

EIM_ACCESS_ADMIN,

NULL,

Err);

.

.

.

eimRemoveAccess

Chapter

9.

EIM

APIs

253

eimRemoveAssociation

Purpose

Removes

an

association

for

a

user

in

a

specified

user

registry

with

an

EIM

identifier.

Format

#include

<eim.h>

int

eimRemoveAssociation(EimHandle

*

eim,

enum

EimAssociationType

associationType,

EimIdentifierInfo

*

idName,

char

*

registryName,

char

*

registryUserName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

associationType

(Input)

The

type

of

association

to

remove.

Valid

values

are:

EIM_ALL_ASSOC

(0)

Remove

all

associations.

EIM_TARGET

(1)

Remove

a

target

association.

EIM_SOURCE

(2)

Remove

a

source

association.

EIM_SOURCE_AND_TARGET

(3)

Remove

both

a

source

association

and

a

target

association.

EIM_ADMIN

(4)

Remove

an

administrative

association.

idName

(Input)

A

structure

that

contains

the

identifier

name

from

which

to

remove

this

association.

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

EIM_UNIQUE_NAME

finds

at

most

one

matching

eimRemoveAssociation

254

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

identifier.

EIM_NAME

results

in

an

error

if

your

EIM

domain

has

more

than

one

identifier

containing

the

same

name.

registryName

(Input)

The

registry

name.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

registryUserName

(Input)

The

registry

user

name.

This

can

be

normalized

according

to

the

normalization

method

for

defined

registry.

The

registry

user

name

should

begin

with

a

non-blank

character.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddAssociation”

on

page

106

v

“eimGetAssociatedIdentifiers”

on

page

168

v

“eimListAssociations”

on

page

201

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

authority

that

the

access

group

has

to

the

EIM

data

depends

on

the

type

of

association

being

removed.

For

administrative

and

source

associations,

the

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

Administrator

v

EIM

identifiers

administrator

For

target

associations,

the

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

Administrator

v

EIM

registries

administrator

v

EIM

registry

X

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

eimRemoveAssociation

Chapter

9.

EIM

APIs

255

Return

Value

Meaning

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

or

identifier

name

is

not

valid

or

insufficient

access

to

EIM

data.

EIMERR_IDNAME_AMBIGUOUS

(20)

More

than

one

EIM

identifier

was

found

that

matches

the

requested

identifier

name.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_ASSOC_TYPE_INVAL

(4)

Association

type

is

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

EMVSERR

An

MVS

environment

or

internal

error

has

occurred.

EIMERR_ZOS_DATA_CONVERSION

(6011)

Error

occurred

when

converting

data

between

code

pages.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

eimRemoveAssociation

256

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

illustrates

remoing

an

administrative,

source,

and

target

association

for

a

specified

identifier:

#include

<eim.h>

#include

<stdio.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimIdentifierInfo

x;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Set

up

identifier

information.

*/

x.idtype

=

EIM_UNIQUE_NAME;

x.id.uniqueName

=

"mjones";

/*

Remove

an

Admin

association

*/

rc

=

eimRemoveAssociation(&handle,

EIM_ADMIN,

&x,

"MyRegistry",

"maryjones",

err);

.

.

.

/*

Remove

a

source

association

*/

rc

=

eimRemoveAssociation(&handle,

EIM_SOURCE,

&x,

"kerberosRegistry",

"mjjones",

err);

.

.

.

/*

Remove

a

target

association

*/

rc

=

eimRemoveAssociation(&handle,

EIM_TARGET,

&x,

"MyRegistry",

"maryjo",

eimRemoveAssociation

Chapter

9.

EIM

APIs

257

err);

.

.

.

eimRemoveAssociation

258

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimRemoveIdentifier

Purpose

Removes

an

EIM

identifier

and

all

of

its

associated

mappings

from

the

EIM

domain.

Format

#include

<eim.h>

int

eimRemoveIdentifier(EimHandle

*

eim,

EimIdentifierInfo

*

idName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

idName

(Input)

A

structure

that

contains

the

name

for

this

identifier.

EIM_NAME

returns

either

one

matching

identifier

or

an

error

if

your

EIM

domain

has

more

than

one

identifier

with

the

same

non-unique

name.

The

layout

of

the

EimIdentifierInfo

structure

follows:

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

idtype

The

idtype

in

the

EimIdentifierInfo

structure

indicates

which

identifier

name

has

been

provided.

EIM_UNIQUE_NAME

finds

at

most

one

matching

identifier.

EIM_NAME

results

in

an

error

if

your

EIM

domain

has

more

than

one

identifier

containing

the

same

name.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddIdentifier”

on

page

111

v

“eimChangeIdentifier”

on

page

124

v

“eimGetAssociatedIdentifiers”

on

page

168

eimRemoveIdentifier

Chapter

9.

EIM

APIs

259

v

“eimListIdentifiers”

on

page

214

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Identifier

not

found

or

insufficient

access

to

EIM

data.

EIMERR_IDNAME_AMBIGUOUS

(20)

More

than

one

EIM

identifier

was

found

that

matches

the

requested

identifier

name.

EIMERR_NOIDENTIFIER

(25)

EIM

identifier

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_IDNAME_TYPE_INVAL

(52)

The

EimIdType

value

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

eimRemoveIdentifier

260

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Value

Meaning

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

the

eimConnect

API

and

try

the

request

again.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

LDAP

connection

is

for

read-only.

Use

eimConnectToMaster

to

get

a

write

connection.

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

removing

an

EIM

identifier:

#include

<eim.h>

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

EimIdentifierInfo

idInfo;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Set

identifier

information.

*/

idInfo.idtype

=

EIM_UNIQUE_NAME;

idInfo.id.uniqueName

=

"Mary

Smith";

/*

Remove

this

identifier.

*/

rc

=

eimRemoveIdentifier(&handle,

&idInfo,

Err);

.

.

.

eimRemoveIdentifier

Chapter

9.

EIM

APIs

261

eimRemoveRegistry

Purpose

Removes

a

currently

participating

registry

from

the

EIM

domain.

Note:

You

cannot

remove

a

system

registry

if

there

are

any

application

registries

that

are

a

subset

of

the

system

registry.

Format

#include

<eim.h>

int

eimRemoveRegistry(EimHandle

*

eim,

char

*

registryName,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

A

valid

connection

is

required.

registryName

(Input)

The

name

of

the

registry

to

remove.

Registry

names

are

case-independent

(meaning,

not

case-sensitive).

The

following

special

characters

are

not

allowed

in

registry

names:

,

=

+

<

>

#

;

\

*

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimAddApplicationRegistry”

on

page

102

v

“eimAddSystemRegistry”

on

page

115

v

“eimChangeRegistry”

on

page

128

v

“eimListRegistries”

on

page

221

Authorization

EIM

data

EIM

access

groups

control

access

to

EIM

data.

LDAP

administrators

also

have

access

to

EIM

data.

The

access

groups

whose

members

have

authority

to

the

EIM

data

for

this

API

follow:

v

EIM

administrator

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

eimRemoveRegistry

262

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

EBADDATA

eimrc

is

not

valid.

EBADNAME

Registry

not

found

or

insufficient

access

to

EIM

data.

EIMERR_NOREG

(28)

EIM

registry

not

found

or

insufficient

access

to

EIM

data.

EBUSY

Unable

to

allocate

internal

system

object.

EIMERR_NOLOCK

(26)

(z/OS

does

not

return

this

value.)

Unable

to

allocate

internal

system

object.

ECONVERT

Data

conversion

error.

EIMERR_DATA_CONVERSION

(13)

(z/OS

does

not

return

this

value.)

Error

occurred

when

converting

data

between

code

pages.

EINVAL

Input

parameter

was

not

valid.

EIMERR_HANDLE_INVAL

(17)

EimHandle

is

not

valid.

EIMERR_PARM_REQ

(34)

Missing

required

parameter.

Please

check

the

API

documentation.

EIMERR_PTR_INVAL

(35)

(z/OS

does

not

return

this

value.)

Pointer

parameter

is

not

valid.

ENOMEM

Unable

to

allocate

required

space.

EIMERR_NOMEM

(27)

No

memory

available.

Unable

to

allocate

required

space.

ENOTCONN

LDAP

connection

has

not

been

made.

EIMERR_NOT_CONN

(31)

Not

connected

to

LDAP.

Use

either

the

eimConnect

or

eimConnectToMaster

API

and

try

the

request

again.

ENOTSAFE

Cannot

delete

a

system

registry

when

an

application

registry

has

this

system

registry

defined.

EIMERR_REG_NOTEMPTY

(40)

Cannot

delete

a

system

registry

when

an

application

registry

has

this

system

registry

defined.

EROFS

LDAP

connection

is

for

read-only.

Need

to

connect

to

master.

EIMERR_READ_ONLY

(36)

This

LDAP

connection

has

″read-only″

access.

A

connection

to

the

master

LDAP

server

with

read/write

is

required

to

complete

this

operation.

Use

eimConnectToMaster

to

get

a

write

connection.

eimRemoveRegistry

Chapter

9.

EIM

APIs

263

Return

Value

Meaning

EUNKNOWN

Unexpected

exception.

EIMERR_LDAP_ERR

(23)

Unexpected

LDAP

error.

EIMERR_UNEXP_OBJ_VIOLATION

(56)

Unexpected

object

violation.

EIMERR_UNKNOWN

(44)

Unknown

error

or

unknown

system

state.

Example

The

following

example

illustrates

removing

an

EIM

registry:

#include

<eim.h>

.

.

.

int

rc;

char

eimerr[200];

EimRC

*

err;

EimHandle

handle;

/*

Set

up

error

structure.

*/

memset(eimerr,0x00,200);

err

=

(EimRC

*)eimerr;

err->memoryProvidedByCaller

=

200;

.

.

.

/*

Remove

the

registry

*/

rc

=

eimRemoveRegistry(&handle,

"MyRegistry",

err);

.

.

.

eimRemoveRegistry

264

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimRetrieveConfiguration

Purpose

This

API

reads

the

configuration

information

for

the

system

to

use.

On

z/OS

use

RACF

services

instead

to

retrieve

configuration

information.

This

API

retrieves

the

EIM

configuration

information

for

this

system.

Format

#include

<eim.h>

int

eimRetrieveConfiguration(unsigned

int

lengthOfEimConfig,

EimConfig

*

configData,

int

ccsid,

EimRC

*

eimrc)

Parameters

lengthOfEimConfig

(Input)

The

number

of

bytes

the

caller

provides

for

the

configuration

information.

The

minimal

size

required

is

36

bytes.

configData

(Output)

A

pointer

to

the

data

to

return.

The

EimConfig

structure

contains

information

about

the

returned

data.

The

API

returns

as

much

data

as

space

has

been

provided.

The

EimConfig

structure

follows:

typedef

struct

EimConfig

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API.

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API.

*/

int

enable;

/*

Flag

to

indicate

if

enabled

to

participate

in

EIM

domain

0

=

not

enabled

1

=

enabled

*/

EimListData

ldapURL;

/*

ldap

URL

for

domain

controller

*/

EimListData

localRegistry;

/*

Local

system

registry

*/

EimListData

kerberosRegistry;

/*

Kerberos

registry

*/

}

EimConfig;

The

EimListData

structure

follows:

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure,

i.e.

the

structure

containing

this

structure.

*/

}

EimListData;

ccsid

(Input)

The

coded

character

set

identifier

(CCSID)

for

the

output

data.

If

the

ccsid

is

0

or

65535,

EIM

uses

the

default

job

CCSID.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

eimRetrieveConfiguration

Chapter

9.

EIM

APIs

265

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimSetConfiguration”

on

page

269

Authorization

This

API

requires

APF

authorization

to

use.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

ENOTSUP

Operation

is

not

supported.

EIMERR_API_NOTSUPP

(6012)

The

EIM

API

is

not

supported

eimRetrieveConfiguration

266

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimSetAttribute

Purpose

Sets

attributes

in

the

EIM

handle

structure.

Format

#include

<eim.h>

int

eimSetAttribute(EimHandle

*

eim,

enum

EimHandleAttr

attrName,

void

*

attrValue,

EimRC

*

eimrc)

Parameters

eim

(Input)

The

EIM

handle

that

a

previous

call

to

eimCreateHandle

returns.

attrName

(Input)

The

name

of

the

attribute

to

set.

This

can

be:

EIM_HANDLE_CCSID

(0)

(z/OS

does

not

support

this

value.)

This

is

the

CCSID

of

character

data

that

the

caller

of

the

EIM

APIs

passes

by

using

the

specified

EIM

handle.

This

field

is

a

4-byte

integer.

When

a

handle

is

created,

this

is

set

to

the

job

default

CCSID.

attrValue

(Input)

A

pointer

to

the

attribute

value.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

See

also

the

following:

v

“eimConnect”

on

page

140

v

“eimConnectToMaster”

on

page

145

v

“eimCreateHandle”

on

page

156

v

“eimDestroyHandle”

on

page

164

v

“eimGetAttribute”

on

page

175

Authorization

z/OS

authorization

The

caller

of

the

API

must

be

APF-authorized.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

eimSetAttribute

Chapter

9.

EIM

APIs

267

Return

Value

Meaning

0

Request

was

successful.

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ACCESS

(1)

Insufficient

access

to

EIM

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

ENOTSUP

Attribute

type

is

not

supported.

EIMERR_ATTR_NOTSUPP

(6)

The

specified

attribute

is

not

supported.

eimSetAttribute

268

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimSetConfiguration

Purpose

This

API

sets

the

configuration

information

for

the

system

to

use.

On

z/OS,

use

RACF

services

to

set

the

configuration

information.

This

API

has

no

effect

on

the

configuration.

Format

#include

<eim.h>

int

eimSetConfiguration(int

enable,

char

*

ldapURL,

char

*

localRegistry,

char

*

kerberosRegistry,

int

ccsid,

EimRC

*

eimrc)

Parameters

enable

(Input)

Indicates

if

this

system

is

able

to

establish

new

connections

in

order

to

participate

in

an

EIM

domain.

Possible

values

are:

0

Not

enabled

to

participate

in

EIM

domain.

You

cannot

establish

new

connections

with

the

configured

EIM

domain.

non-zero

Enabled

to

participate

in

EIM

domain.

You

can

establish

new

connections

with

the

EIM

domain.

ldapURL

(Input)

A

uniform

resource

locator

(URL)

that

contains

the

EIM

configuration

information

for

the

EIM

domain

controller.

This

information

is

used

for

all

EIM

operations.

The

maximum

size

for

this

URL

is

1000

bytes.

Possible

values

are:

NULL

A

value

of

NULL

indicates

that

the

LDAP

URL

that

the

system

stores

should

not

change.

EIM_CONFIG_NONE

(*NONE)

This

value

indicates

that

this

system

is

not

configured

for

EIM.

ldapURL

A

URL

that

contains

EIM

domain

controller

information.

This

URL

has

one

of

the

following

formats:

ldap://host:port/dn

host:port

Is

the

name

of

the

host

on

which

the

EIM

domain

controller

is

running.

(The

port

number

is

optional.)

dn

Is

the

distinguished

name

for

the

domain

entry.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note:

In

contrast

with

ldap,

ldaps

indicates

that

this

host

and

port

combination

uses

SSL

and

TLS.

eimSetConfiguration

Chapter

9.

EIM

APIs

269

|

|
|

|
|

localRegistry

(Input)

The

local

EIM

system

registry

name.

The

maximum

size

for

this

registry

name

is

256

bytes.

Possible

values

are:

NULL

A

value

of

NULL

indicates

that

the

local

registry

name

that

the

system

stores

should

not

change.

EIM_CONFIG_NONE

(*NONE)

This

value

indicates

that

there

is

no

local

system

registry.

registry

The

local

EIM

system

registry

name.

kerberosRegistry

(Input)

The

EIM

Kerberos

registry

name.

The

maximum

size

for

this

registry

name

is

256

bytes.

Possible

values

are:

NULL

A

value

of

NULL

indicates

that

the

EIM

Kerberos

registry

that

the

system

stores

should

not

change.

EIM_CONFIG_NONE

(*NONE)

This

value

indicates

that

there

is

no

Kerberos

registry

for

EIM.

registry

The

EIM

Kerberos

registry

name.

This

is

the

Kerberos

realm

name.

ccsid

(Input)

The

CCSID

of

the

input

data.

If

the

ccsid

is

0

or

65535,

EIM

uses

the

default

job

CCSID.

eimrc

(Input/Output)

The

structure

in

which

to

return

error

code

information.

If

the

return

value

is

not

0,

EIM

sets

eimrc

with

additional

information.

This

parameter

can

be

NULL.

For

the

format

of

the

structure,

see

“EimRC

--

EIM

return

code

parameter”

on

page

95.

Related

Information

None.

Authorization

This

API

requires

APF

authorization

to

use.

Return

Values

The

following

table

lists

the

return

values

from

the

API.

Following

each

return

value

is

the

list

of

possible

values

for

the

messageCatalogMessageID

field

in

the

eimrc

parameter

for

that

value.

Return

Value

Meaning

EACCES

Access

denied.

Not

enough

permissions

to

access

data.

EIMERR_ZOS_NO_APF_AUTH

(6001)

Job

Step

TCB

is

not

APF-authorized.

ENOTSUP

Operation

is

not

supported.

EIMERR_API_NOTSUPP

(6012)

The

EIM

API

not

supported.

eimSetConfiguration

270

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|

||
|
|

||
|

||

|
|
|

||
|
|

||
|

||
|

|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|

|||

||

|
|

||

||
|

Chapter

10.

EIM

header

file

and

example

eim.h

The

eim.h

header

file

resides

in

the

HFS

in

the

/usr/include

directory.

You

include

eim.h

in

all

applications

using

EIM

APIs.

Note:

For

the

latest

version

of

the

eim.h

header

file

refer

to

the

Hierarchical

File

System

(HFS).
??=ifdef

__COMPILER_VER__

??=pragma

filetag

("IBM-1047")

??=endif

/*

*

Source

file:

eim.h

1.7.1.1

*

Last

Updated:

4/11/03

10:52:01

*/

/***/

/*

*/

/*

Licensed

Materials

-

Property

of

IBM

*/

/*

5694-A01

*/

/*

(C)

Copyright

IBM

Corp.

2002

*/

/*

Status

=

HIT7708

*/

/*

*/

/***/

#ifndef

EIM_h

#define

EIM_h

#ifdef

__cplusplus

#pragma

info(none)

#else

#pragma

nomargins

nosequence

#pragma

checkout(suspend)

#endif

/***

START

HEADER

FILE

SPECIFICATIONS

********************************/

/*

*/

/*

Header

File

Name:

eim.h

*/

/*

*/

/*

Descriptive

Name:

Enterprise

Identity

Mapping

(EIM)

APIs

*/

/*

*/

/*

Description:

*/

/*

*/

/*

Defines

prototypes,

macros,

variables,

and

*/

/*

structures

to

be

used

with

the

EIM

APIs.

*/

/*

*/

/*

Header

Files

Included:

*/

/*

*/

/*

*/

/*

Macros

List:

*/

/*

*/

/*

*/

/*

Structure

List:

*/

/*

*/

/*

*/

/*

*/

/*

Function

Prototype

List:

*/

/*

*/

/*

*/

/*

Change

Activity:

*/

/*

*/

/*

CFD

List:

*/

/*

*/

/*

FLAG

REASON

LEVEL

DATE

PGMR

CHANGE

DESCRIPTION

*/

/*

*/

/*

$A0=

D9860600

5D20

020202

ROCH

New

include.

*/

/*

$A1=

P9A04903

5D20

020330

ROCH

Fix

AIX

registry

type.

*/

©

Copyright

IBM

Corp.

2004

271

|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*

$L1=

EIM

HIT7708

091901

RDC1

EIM

*/

/*

$P1=

MG01014

HIT7708

062402

$PDTCG1:

krb/ssl

removal

@P1A*/

/*

$P2=

MG01149

HIT7708

081502

$PDTCG1:

Define

errnos

@P2A*/

/*

$L2=

MG01076

HIT7708

101002

$PDTCG1:

krb/ssl

bind

support

*/

/***

END

HEADER

FILE

SPECIFICATIONS

**********************************/

#if

(__OS400_TGTVRM__>=510)

#pragma

datamodel(P128)

#endif

#ifndef

__MVS__

/*@P1C*/

#include

"gssapi.h"

#else

/*@P1C*/

#include

<skrb/gssapi.h>

/*@P1A*/

#endif

/*@P1A*/

#ifdef

__cplusplus

extern

"C"

{

#endif

#pragma

enum(4)

/*--*/

/*

On

z/OS,

define

non-standard

errno

values

if

not

defined

in

the

*/

/*

errno.h

file

@P2A*/

/*--*/

#ifdef

__MVS__

/*@P2A*/

#include

<errno.h>

/*@P2A*/

#ifndef

EBADDATA

/*@P2A*/

#define

EBADDATA

245

/*

Data

invalid.

@P2A*/

#endif

/*@P2A*/

#ifndef

EUNKNOWN

/*@P2A*/

#define

EUNKNOWN

246

/*

Unknown

system

state.

@P2A*/

#endif

/*@P2A*/

#ifndef

ENOTSUP

/*@P2A*/

#define

ENOTSUP

247

/*

Operation

not

supported.

@P2A*/

#endif

/*@P2A*/

#ifndef

EBADNAME

/*@P2A*/

#define

EBADNAME

248

/*

Invalid

file

name

specified.

@P2A*/

#endif

/*@P2A*/

#ifndef

ENOTSAFE

/*@P2A*/

#define

ENOTSAFE

249

/*

Function

not

allowed.

@P2A*/

#endif

#endif

/*--*/

/*

Constants

*/

/*--*/

#define

EIM_HANDLE_SIZE

16

/*

EIM

Handle

size

*/

#define

EIM_LIST_MIN_SIZE

20

/*

Minimal

size

for

EimList

structure

*/

#define

EIM_RC_MIN_SIZE

48

/*

Minimal

size

for

EimRc

structure

*/

#define

EIM_CONFIG_MIN_SIZE

36

/*

Minimal

size

for

EimConfig

structure

*/

#define

EIM_ATTRIBUTE_MIN_SIZE

16

/*

Minimal

size

for

EimAttribute

structure

*/

#define

EIM_LDAP_URL_MAX

1000

/*

Maximum

size

for

LDAP

URL

*/

#define

EIM_LOCREG_MAX

256

/*

Maximum

size

for

local

registry

*/

#define

EIM_KRBREG_MAX

256

/*

Maximum

size

for

kerberos

registry*/

#define

EIM_UNIQUE_ADD_SIZE

20

/*

Minimal

additional

size

required

for

272

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

identifier

unique

name

*/

/*--*/

/*

Configuration

constants

*/

/*--*/

#define

EIM_CONFIG_NONE

"*NONE"

/*--*/

/*

Normalization

methods

*/

/*--*/

#define

EIM_NORM_CASE_IGNORE

"-caseIgnore"

#define

EIM_NORM_CASE_EXACT

"-caseExact"

/*--*/

/*

Registry

types

*/

/*--*/

#define

EIM_REGTYPE_RACF

"1.3.18.0.2.33.1-caseIgnore"

#define

EIM_REGTYPE_OS400

"1.3.18.0.2.33.2-caseIgnore"

#define

EIM_REGTYPE_KERBEROS_EX

"1.3.18.0.2.33.3-caseExact"

#define

EIM_REGTYPE_KERBEROS_IG

"1.3.18.0.2.33.4-caseIgnore"

#define

EIM_REGTYPE_AIX

"1.3.18.0.2.33.5-caseExact"

#define

EIM_REGTYPE_NDS

"1.3.18.0.2.33.6-caseIgnore"

#define

EIM_REGTYPE_LDAP

"1.3.18.0.2.33.7-caseIgnore"

#define

EIM_REGTYPE_POLICY_DIRECTOR

"1.3.18.0.2.33.8-caseIgnore"

#define

EIM_REGTYPE_WIN2K

"1.3.18.0.2.33.9-caseIgnore"

/*--*/

/*

Registry

alias

types

*/

/*--*/

#define

EIM_ALIASTYPE_DNS

"DNSHostName"

#define

EIM_ALIASTYPE_KERBEROS

"KerberosRealm"

#define

EIM_ALIASTYPE_ISSUER

"IssuerDN"

#define

EIM_ALIASTYPE_ROOT

"RootDN"

#define

EIM_ALIASTYPE_TCPIP

"TCPIPAddress"

#define

EIM_ALIASTYPE_LDAPDNSHOSTNAME

"LdapDnsHostName"

/*--*/

/*

EimHandle

Attributes

*/

/*--*/

enum

EimHandleAttr

{

EIM_HANDLE_CCSID,

EIM_HANDLE_DOMAIN,

/*

Retrieved

but

not

changed

*/

EIM_HANDLE_HOST,

/*

Retrieved

but

not

changed

*/

EIM_HANDLE_PORT,

/*

Retrieved

but

not

changed

*/

EIM_HANDLE_SECPORT,

/*

Retrieved

but

not

changed

*/

EIM_HANDLE_MASTER_HOST,

/*

Retrieved

but

not

changed

*/

EIM_HANDLE_MASTER_PORT,

/*

Retrieved

but

not

changed

*/

EIM_HANDLE_MASTER_SECPORT

/*

Retrieved

but

not

changed

*/

};

/*--*/

/*

Attributes

to

change,

add

or

remove

*/

/*--*/

enum

EimChangeType

{

EIM_CHG,

EIM_ADD,

EIM_RMV

};

enum

EimDomainAttr

{

/*

Change

type:

*/

EIM_DOMAIN_DESCRIPTION

/*

Change

*/

};

enum

EimRegistryAttr

Chapter

10.

EIM

header

file

and

example

273

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{

/*

Change

type:

*/

EIM_REGISTRY_DESCRIPTION,

/*

Change

*/

EIM_REGISTRY_LABELEDURI

/*

Change

*/

};

enum

EimRegistryUserAttr

{

/*

Change

type:

*/

EIM_REGISTRYUSER_DESCRIPTION,

/*

Change

*/

EIM_REGISTRYUSER_ADDL_INFO

/*

Add

or

remove

*/

};

enum

EimIdentifierAttr

{

/*

Change

type:

*/

EIM_IDENTIFIER_DESCRIPTION,

/*

Change

*/

EIM_IDENTIFIER_NAME,

/*

Add

or

remove

*/

EIM_IDENTIFIER_ADDL_INFO

/*

Add

or

remove

*/

};

/*--*/

/*

EIMAssociationType

*/

/*--*/

enum

EimAssociationType

{

EIM_ALL_ASSOC,

/*

Source

+

target

+

admin

*/

EIM_TARGET,

EIM_SOURCE,

EIM_SOURCE_AND_TARGET,

EIM_ADMIN

};

/*--*/

/*

EIMRegistryKind

*/

/*--*/

enum

EimRegistryKind

{

EIM_ALL_REGISTRIES,

/*

System

and

application

*/

EIM_SYSTEM_REGISTRY,

EIM_APPLICATION_REGISTRY

};

/*--*/

/*

EIMHandle

*/

/*--*/

typedef

struct

EIMHandle

{

char

handle[EIM_HANDLE_SIZE];

}

EimHandle;

/*--*/

/*

Eim

Connect

Information

*/

/*--*/

enum

EimPasswordProtect

{

EIM_PROTECT_NO,

EIM_PROTECT_CRAM_MD5,

EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum

EimConnectType

{

EIM_SIMPLE,

EIM_KERBEROS,

EIM_CLIENT_AUTHENTICATION

};

typedef

struct

EimSimpleConnectInfo

{

enum

EimPasswordProtect

protect;

char

*

bindDn;

char

*

bindPw;

}

EimSimpleConnectInfo;

274

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef

struct

EimSSLInfo

{

char

*

keyring;

char

*

keyring_pw;

char

*

certificateLabel;

}

EimSSLInfo;

typedef

struct

EimConnectInfo

{

enum

EimConnectType

type;

union

{

gss_cred_id_t

*

kerberos;

EimSimpleConnectInfo

simpleCreds;

}

creds;

EimSSLInfo

*

ssl;

}

EimConnectInfo;

/*--*/

/*

EimIdAction

*/

/*--*/

enum

EimIdAction

{

EIM_FAIL,

EIM_GEN_UNIQUE

};

/*--*/

/*

EimIdentifierInfo

*/

/*--*/

enum

EimIdType

{

EIM_UNIQUE_NAME,

EIM_ENTRY_UUID,

EIM_NAME

};

typedef

struct

EimIdentifierInfo

{

union

{

char

*

uniqueName;

char

*

entryUUID;

char

*

name;

}

id;

enum

EimIdType

idtype;

}

EimIdentifierInfo;

/*--*/

/*

*/

/*

Return

code

structure

*/

/*

*/

/*--*/

typedef

struct

EimRC

{

unsigned

int

memoryProvidedByCaller;

/*

Input:

Size

of

the

entire

RC

structure.

This

is

filled

in

by

the

caller.

This

is

used

to

tell

the

API

how

much

space

was

provided

for

substitution

text

*/

unsigned

int

memoryRequiredToReturnData;/*

Output:

Filled

in

by

API

to

tell

caller

how

much

data

could

have

been

returned.

Caller

can

then

determine

if

the

caller

provided

enough

space

(i.e.

if

the

entire

substitution

string

was

able

to

be

copied

to

this

structure.

*/

int

returnCode;

/*

Same

as

the

errno

returned

as

the

rc

for

the

API

*/

int

messageCatalogSetNbr;

/*

Message

catalog

set

number

*/

int

messageCatalogMessageID;

/*

Message

catalog

message

id

*/

int

ldapError;

/*

ldap

error,

if

available

*/

int

sslError;

/*

SLL

error,

if

available

*/

char

reserved[16];

/*

Reserved

for

future

use

*/

Chapter

10.

EIM

header

file

and

example

275

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned

int

substitutionTextLength;

/*

Length

of

substitution

text

excluding

a

null-terminator

which

may

or

may

not

be

present

*/

char

substitutionText[1];

/*

further

info

describing

the

error.

*/

}

EimRC;

/*--*/

/*

*/

/*

Access

structures

*/

/*

*/

/*--*/

enum

EimAccessUserType

{

EIM_ACCESS_DN,

EIM_ACCESS_KERBEROS,

EIM_ACCESS_LOCAL_USER

};

typedef

struct

EimAccessUser

{

union

{

char

*

dn;

char

*

kerberosPrincipal;

char

*

localUser;

}

user;

enum

EimAccessUserType

userType;

}

EimAccessUser;

enum

EimAccessType

{

EIM_ACCESS_ADMIN,

EIM_ACCESS_REG_ADMIN,

EIM_ACCESS_REGISTRY,

EIM_ACCESS_IDENTIFIER_ADMIN,

EIM_ACCESS_MAPPING_LOOKUP

};

enum

EimAccessIndicator

{

EIM_ACCESS_NO,

EIM_ACCESS_YES

};

/*--*/

/*

*/

/*

EimListData

-

this

is

used

to

access

the

data

elements.

*/

/*

EimSubList

-

this

is

used

to

access

sub

lists

within

the

*/

/*

list

information

returned.

*/

/*--*/

typedef

struct

EimListData

{

unsigned

int

length;

/*

Length

of

data

*/

unsigned

int

disp;

/*

Displacement

to

data.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure

i.e.

the

structure

containing

this

structure

*/

}

EimListData;

typedef

struct

EimSubList

{

unsigned

int

listNum;

/*

Number

of

entries

in

the

list

*/

unsigned

int

disp;

/*

Displacement

to

sublist.

This

byte

offset

is

relative

to

the

start

of

the

parent

structure

i.e.

the

structure

containing

this

structure

*/

}

EimSubList;

/*--*/

/*

*/

276

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*

EimConfig

*/

/*

Information

returned

from

eimRetrieveConfiguration()

API.

*/

/*--*/

typedef

struct

EimConfig

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

int

enable;

/*

Flag

to

indicate

if

enabled

to

participate

in

EIM

domain

0

=

not

enabled

1

=

enabled

*/

EimListData

ldapURL;

/*

ldap

URL

for

domain

controller

*/

EimListData

localRegistry;

/*

Local

system

registry

*/

EimListData

kerberosRegistry;

/*

Kerberos

registry

*/

}

EimConfig;

/*--*/

/*

*/

/*

EimAttribute

*/

/*

Information

returned

from

eimGetAttribute()

API.

*/

/*--*/

typedef

struct

EimAttribute

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

EimListData

attribute;

/*

handle

attribute

*/

}

EimAttribute;

/*--*/

/*

*/

/*

EimList

-

this

is

used

by

all

EIM

APIs

that

return

a

list.

*/

/*

It

gives

information

on

the

amount

of

information

*/

/*

returned

and

then

gives

access

to

the

first

list

*/

/*

entry.

*/

/*--*/

typedef

struct

EimList

{

unsigned

int

bytesReturned;

/*

Number

of

bytes

actually

returned

by

the

API

*/

unsigned

int

bytesAvailable;

/*

Number

of

bytes

of

available

data

that

could

have

been

returned

by

the

API

*/

unsigned

int

entriesReturned;

/*

Number

of

entries

actually

returned

by

the

API

*/

unsigned

int

entriesAvailable;

/*

Number

of

entries

available

to

be

returned

by

the

API

*/

unsigned

int

firstEntry;

/*

Displacement

to

the

first

linked

list

entry.

This

byte

offset

is

relative

to

the

start

of

the

EimList

structure.

*/

}

EimList;

/*--*/

/*

EimDomain

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListDomains

*/

/*--*/

typedef

struct

EimDomain

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Domain

name

*/

Chapter

10.

EIM

header

file

and

example

277

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EimListData

dn;

/*

Distinguished

name

for

the

domain

*/

EimListData

description;

/*

Description

*/

}

EimDomain;

/*--*/

/*

EimRegistry

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListRegistries

*/

/*

eimGetRegistryFromAlias

*/

/*--*/

typedef

struct

EimRegistry

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

enum

EimRegistryKind

kind;

/*

Kind

of

registry

*/

EimListData

name;

/*

Registry

name

*/

EimListData

type;

/*

Registry

type

*/

EimListData

description;

/*

Description

*/

EimListData

entryUUID;

/*

Entry

UUID

*/

EimListData

URI;

/*

URI

*/

EimListData

systemRegistryName;

/*

System

registry

name

*/

EimSubList

registryAlias;

/*

EimRegistryAlias

sublist

*/

}

EimRegistry;

/*--*/

/*

EimIdentifier

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListIdentifiers

*/

/*

eimGetAssociatedIdentifiers

*/

/*--*/

typedef

struct

EimIdentifier

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

uniquename;

/*

Unique

name

*/

EimListData

description;

/*

Description

*/

EimListData

entryUUID;

/*

UUID

*/

EimSubList

names;

/*

EimIdentifierName

sublist

*/

EimSubList

additionalInfo;

/*

EimAddlInfo

sublist

*/

}

EimIdentifier;

/*--*/

/*

EimAssociation

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListAssociations

*/

/*--*/

typedef

struct

EimAssociation

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

enum

EimAssociationType

associationType;

/*

Type

of

association

*/

EimListData

registryType;

/*

Registry

type

*/

EimListData

registryName;

/*

Registry

name

*/

EimListData

registryUserName;

/*

Registry

user

name

*/

}

EimAssociation;

/*--*/

/*

EimRegistryAlias

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimGetRegistryAlias

*/

/*

Supplemental

list

information

for

the

following

structs:

*/

/*

EimRegistry

*/

/*--*/

278

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef

struct

EimRegistryAlias

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

type;

/*

Alias

type

*/

EimListData

value;

/*

Alias

value

*/

}

EimRegistryAlias;

/*--*/

/*

EimRegistryUser

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListRegistryUsers

*/

/*--*/

typedef

struct

EimRegistryUser

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

registryUserName;

/*

Name

*/

EimListData

description;

/*

Description

*/

EimSubList

additionalInfo;

/*

EimAddlInfo

sublist

*/

}

EimRegistryUser;

/*--*/

/*

EimTargetIdentity

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimGetTargetFromSource

*/

/*

eimGetTargetFromIdentifier

*/

/*--*/

typedef

struct

EimTargetIdentity

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

userName;

/*

User

name

*/

}

EimTargetIdentity;

/*--*/

/*

EimIdentifierName

*/

/*

Supplemental

list

information

for

the

following

structs:

*/

/*

EimIdentifier

*/

/*--*/

typedef

struct

EimIdentifierName

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Name

*/

}

EimIdentifierName;

/*--*/

/*

EimRegistryName

*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimGetRegistryNameFromAlias

*/

/*--*/

typedef

struct

EimRegistryName

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

name;

/*

Name

*/

}

EimRegistryName;

/*--*/

/*

EimAddlInfo

*/

/*--*/

/*

Supplemental

list

information

for

the

following

structs:

*/

/*

EimRegistryUser

*/

Chapter

10.

EIM

header

file

and

example

279

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*

EimIdentifier

*/

/*--*/

typedef

struct

EimAddlInfo

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

addlInfo;

/*

Additional

info

*/

}

EimAddlInfo;

/*--*/

/*

EimAccess

*/

/*--*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListAccess

*/

/*--*/

typedef

struct

EimAccess

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

EimListData

user;

/*

User

with

access.

This

data

will

be

in

the

format

of

the

dn

for

for

access

id

*/

}

EimAccess;

/*--*/

/*

EimUserAccess

*/

/*--*/

/*

List

information

returned

by

the

following

APIs:

*/

/*

eimListUserAccess

*/

/*--*/

typedef

struct

EimUserAccess

{

unsigned

int

nextEntry;

/*

Displacement

to

next

entry.

This

byte

offset

is

relative

to

the

start

of

this

structure

*/

enum

EimAccessIndicator

eimAdmin;

enum

EimAccessIndicator

eimRegAdmin;

enum

EimAccessIndicator

eimIdenAdmin;

enum

EimAccessIndicator

eimMappingLookup;

EimSubList

registries;

/*

EimRegistryName

sublist

*/

}

EimUserAccess;

/*--*/

/*

*/

/*

Domain

*/

/*

*/

/*--*/

int

eimCreateDomain

(

char

*

ldapURL,

/*

Input:

ldap

URL

that

indicates

host,

port,

parent

dn

*/

EimConnectInfo

connectInfo,

/*

Input:

Connection

information

*/

char

*

description,

/*

Input:

Domain

description

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimDeleteDomain

(

char

*

ldapURL,

/*

Input:

ldap

URL

that

indicates

host,

port,

parent

dn

*/

EimConnectInfo

connectInfo,

/*

Input:

Connection

information

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

280

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int

eimChangeDomain

(

char

*

ldapURL,

/*

Input:

ldap

URL

that

indicates

host,

port,

parent

dn

*/

EimConnectInfo

connectInfo,

/*

Input:

Connection

information

*/

enum

EimDomainAttr

attrName,

/*

Input:

Attribute

to

change

*/

char

*

attrValue,

/*

Input:

New

attribute

value

*/

enum

EimChangeType

changeType,

/*

Input:

Type

of

change

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListDomains

(

char

*

ldapURL,

/*

Input:

ldap

URL

that

indicates

host,

port,

parent

dn

*/

EimConnectInfo

connectInfo,

/*

Input:

Connection

information

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimDomain

element.

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Configuration

*/

/*

*/

/*--*/

int

eimSetConfiguration

(

int

enable,

/*

Input:

indicate

if

enabled

to

participate

in

EIM

domain

0

=

not

enabled

1

=

enabled

*/

char

*

ldapURL,

/*

Input:

LDAP

URL

configuration

information:

host,

port

and

domain

dn

*/

char

*

localRegistry,

/*

Input:

Local

registry

name

*/

char

*

kerberosRegistry,

/*

Input:

Kerberos

registry

*/

int

ccsid,

/*

CCSID

of

the

input

data

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimRetrieveConfiguration

(

unsigned

int

lengthOfEimConfig,

/*

Input:

size

provided

for

configData

*/

EimConfig

*

configData,

/*

Output:

Configuration

data

returned.

*/

int

ccsid,

/*

CCSID

the

data

will

be

returned

in

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Handles

*/

/*

*/

/*--*/

int

eimCreateHandle

(

EimHandle

*

eim,

/*

Output:

eimHandle

*/

char

*

ldapURL,

/*

Input:

ldap

URL

that

indicates

host,

port,

parent

dn

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

Chapter

10.

EIM

header

file

and

example

281

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int

eimDestroyHandle

(

EimHandle

*

eim,

/*

Input:

eimHandle

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimGetAttribute

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimHandleAttr

attrName,

/*

Input:

name

of

attribute

to

get

*/

unsigned

int

lengthOfEimAttribute,

/*

Input:

size

provided

for

EimAttribute

*/

EimAttribute

*

attribute,

/*

Output:

Attribute

data

returned.

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimSetAttribute

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimHandleAttr

attrName,

/*

Input:

name

of

attribute

to

set

*/

void

*

attrValue,

/*

Input:

Pointer

to

buffer

to

the

new

attribute

value

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Connect

*/

/*

*/

/*--*/

int

eimConnect

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimConnectInfo

connectInfo,

/*

Input:

Connection

information

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimConnectToMaster

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimConnectInfo

connectInfo,

/*

Input:

Connection

information

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Registries

*/

/*

*/

/*--*/

int

eimAddSystemRegistry

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryType,

/*

Input:

Registry

type

*/

char

*

description,

/*

Input:

Description

*/

char

*

URI,

/*

Input:

URI

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimAddApplicationRegistry

(

282

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryType,

/*

Input:

Registry

type

*/

char

*

description,

/*

Input:

Description

*/

char

*

systemRegistryName,

/*

Input:

Associated

system

registry

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimRemoveRegistry

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimChangeRegistry

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

enum

EimRegistryAttr

attrName,

/*

Input:

name

of

attribute

to

change.

*/

char

*

attrValue,

/*

Input:

new

value

for

attribute

*/

enum

EimChangeType

changeType,

/*

Input:

Type

of

change

to

make

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListRegistries

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryType,

/*

Input:

Registry

type

*/

enum

EimRegistryKind

registryKind,/*

Input:

Registry

kind

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimRegistry

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Identifier

*/

/*

*/

/*--*/

int

eimAddIdentifier

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

name,

/*

Input:

Requested

name

for

Identifier

*/

enum

EimIdAction

nameInUseAction,

/*

Input:

Action

to

take

if

the

requested

name

is

already

in

use

*/

unsigned

int

*

sizeOfUniqueName,

/*

Input/Output:

size

of

uniqueName

field

*/

char

*

uniqueName,

/*

Output:

Unique

name

*/

char

*

description,

/*

Input:

Description

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimRemoveIdentifier

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

Chapter

10.

EIM

header

file

and

example

283

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

);

int

eimChangeIdentifier

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

enum

EimIdentifierAttr

attrName,

/*

Input:

name

of

attribute

to

change.

*/

char

*

attrValue,

/*

Input:

new

value

for

attribute

*/

enum

EimChangeType

changeType,

/*

Input:

Type

of

change

to

make

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListIdentifiers

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimIdentifier

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimGetAssociatedIdentifiers

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimAssociationType

associationType,

/*

Input:

Type

of

association

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryUserName,

/*

Input:

Registry

user

name

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimIdentifier

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Association

*/

/*

*/

/*--*/

int

eimAddAssociation

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimAssociationType

associationType,

/*

Input:

Type

of

association

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryUserName,

/*

Input:

Registry

user

name

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimRemoveAssociation

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimAssociationType

associationType,

/*

Input:

Type

of

association

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryUserName,

/*

Input:

Registry

user

name

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

284

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int

eimListAssociations

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimAssociationType

associationType,

/*

Input:

Type

of

association

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimAssociation

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Mappings

*/

/*

*/

/*--*/

int

eimGetTargetFromSource

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

sourceRegistryName,/*

Input:

Source

registry

name

*/

char

*

sourceRegistryUserName,/*

Input:

Source

registry

user

name

*/

char

*

targetRegistryName,

/*

Input:

Target

registry

name

*/

char

*

additionalInformation,

/*

Input:

Additional

info

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimTargetIdentity

element*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimGetTargetFromIdentifier

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimIdentifierInfo

*

idName,

/*

Input:

Identifier

info

*/

char

*

targetRegistryName,

/*

Input:

Target

registry

name

*/

char

*

additionalInformation,

/*

Input:

Additional

info

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimTargetIdentity

element*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Registry

User

*/

/*

*/

/*--*/

int

eimChangeRegistryUser

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryUserName,

/*

Input:

Registry

user

name

*/

enum

EimRegistryUserAttr

attrName,

/*

Input:

name

of

attribute

to

change.

*/

Chapter

10.

EIM

header

file

and

example

285

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char

*

attrValue,

/*

Input:

new

value

for

attribute

*/

enum

EimChangeType

changeType,

/*

Input:

Type

of

change

to

make

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListRegistryUsers

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

registryUserName,

/*

Input:

Registry

user

name

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimRegistryUser

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Registry

Alias

*/

/*

*/

/*--*/

int

eimChangeRegistryAlias

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

char

*

aliasType,

/*

Input:

Registry

alias

type

*/

char

*

aliasValue,

/*

Input:

Registry

alias

value

*/

enum

EimChangeType

changeType,

/*

Input:

Type

of

change

to

make

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListRegistryAliases

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

registryName,

/*

Input:

Registry

name

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimRegistryAlias

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimGetRegistryNameFromAlias

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

char

*

aliasType,

/*

Input:

Registry

alias

type

*/

char

*

aliasValue,

/*

Input:

Registry

alias

value

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimRegistryName

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Access

*/

/*

*/

/*--*/

int

eimAddAccess

286

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimAccessUser

*

accessUser,

/*

Input:

User

for

access

*/

enum

EimAccessType

accessType,

/*

Input:

Type

of

access

*/

char

*

registryName,

/*

Input:

Registry

name

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimRemoveAccess

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimAccessUser

*

accessUser,

/*

Input:

User

for

access

*/

enum

EimAccessType

accessType,

/*

Input:

Type

of

access

*/

char

*

registryName,

/*

Input:

Registry

name

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListAccess

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

enum

EimAccessType

accessType,

/*

Input:

Type

of

access

*/

char

*

registryName,

/*

Input:

Registry

name

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimAccess

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimListUserAccess

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimAccessUser

*

accessUser,

/*

Input:

User

for

access

*/

unsigned

int

lengthOfListData,

/*

Input:

size

provided

for

listData

*/

EimList

*

listData,

/*

Output:

In

EimList

the

field

firstEntry

will

get

to

the

first

EimUserAccess

element

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

int

eimQueryAccess

(

EimHandle

*

eim,

/*

Input:

Eim

handle

*/

EimAccessUser

*

accessUser,

/*

Input:

User

for

access

*/

enum

EimAccessType

accessType,

/*

Input:

Type

of

access

*/

char

*

registryName,

/*

Input:

Registry

name

*/

unsigned

int

*

accessIndicator,

/*

Output:

Indicates

whether

access

found

*/

EimRC

*

eimrc

/*

Input/Output:

return

code

*/

);

/*--*/

/*

*/

/*

Error

Message

*/

/*

*/

/*--*/

char

*

eimErr2String

(

EimRC

*

eimrc

/*

Input:

return

code

*/

);

#pragma

enum(pop)

#ifdef

__cplusplus

}

#endif

Chapter

10.

EIM

header

file

and

example

287

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#if

(__OS400_TGTVRM__>=510)

#pragma

datamodel(pop)

#endif

#endif

/*

EIM_h

*/

Example

for

creating

LDAP

suffix

and

user

objects

The

following

is

a

sample

ldapadd

command

and

ldif

file

to

create

suffix

objects

and

an

LDAP

user

object.

Here

are

the

suffix.ldif

file

contents:

#

--

#

Create

the

country

us

object

#

--

dn:

c=us

objectclass:

top

objectclass:

country

c:

us

#

--

#

Create

the

ibm

organization

under

c=us

#

--

dn:

o=ibm,c=us

objectclass:

top

objectclass:

organization

o:

ibm

#

--

#

Create

the

dept20

organizational

unit

object

under

#

o=ibm,c=us

#

--

dn:

ou=dept20,o=ibm,c=us

objectclass:

top

objectclass:

organizationalunit

ou:

dept20

#

--

#

Create

the

eim

administrator

user

object

with

a

password

#

of

"secret"

under

ou=dept20,o=ibm,c=us

#

--

dn:

cn=eim

administrator,ou=dept20,o=ibm,c=us

objectclass:

top

objectclass:

person

sn:

eim

administrator

cn:

eim

administrator

userpassword:

secret

#

End

of

file

suffix.ldif

Then,

to

add

these

entries

to

LDAP,

issue

the

following

ldapadd

command

from

the

z/OS

UNIX

shell:

ldapadd

-h

ldap://some.ldap.host

-D

cn=ldap

administrator

-w

secret

-f

suffix.ldif

288

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

|
|
|
|
|
|

|

Notices

This

information

was

developed

for

products

and

services

offered

in

the

USA.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

USA

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

289

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Mail

Station

P300

2455

South

Road

Poughkeepsie,

NY

12601-5400

USA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

interface

information

This

document

primarily

documents

information

that

is

NOT

intended

to

be

used

as

Programming

Interfaces

of

EIM.

This

document

also

documents

intended

Programming

Interfaces

that

allow

the

customer

to

write

programs

to

obtain

the

services

of

EIM.

This

information

is

identified

where

it

occurs,

either

by

an

introductory

statement

to

a

chapter

or

section

or

by

the

following

marking:

Programming

Interface

information

The

EIM

APIs

are

a

programming

Interface.

They

are

intended

for

customers

to

use

in

customer-written

programs.

End

of

Programming

Interface

information

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States,

or

other

countries,

or

both:

AIX

BookManager

DB2

eserver

iSeries

IBM

IBMLink

Language

Environment

Library

Reader

MVS

OS/390

OS/400

RACF

290

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Redbooks

Resource

Link

SAP

S/390

SecureWay

TalkLink

z/OS

zSeries

Adobe

Acrobat

is

a

trademark

of

Adobe

Systems

Incorporated

in

the

United

States,

other

countries,

or

both.

Intel

is

a

trademark

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft

and

Windows

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Tivoli

is

a

trademark

of

International

Business

Machines

Corporation

or

Tivoli

Systems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

can

be

trademarks

or

service

marks

for

other

companies.

Notices

291

292

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Bibliography

The

following

lists

titles

and

numbers

of

documents

referenced

in

this

publication.

v

z/OS

C/C++

Run-Time

Library

Reference,

SA22-7821

v

z/OS

Integrated

Security

Services

LDAP

Client

Programming,

SC24-5924

v

z/OS

Integrated

Security

Services

LDAP

Server

Administration

and

Use,

SC24-5923

v

z/OS

Security

Server

RACF

Callable

Services,

SA22-7691

v

z/OS

Security

Server

RACF

Command

Language

Reference,

SA22-7687

v

z/OS

Security

Server

RACF

Security

Administrator’s

Guide,

SA22-7683

v

z/OS

TSO/E

REXX

Reference,

SA22-7790

v

z/OS

UNIX

System

Services

Command

Reference,

SA22-7802

v

z/OS

UNIX

System

Services

Planning,

GA22-7800

v

z/OS

Integrated

Security

Services

Network

Authentication

Service

Administration,

SC24-5926

v

z/OS

Integrated

Security

Services

Network

Authentication

Service

Programming,

SC24-5927

v

z/OS

System

Secure

Sockets

Layer

Programming,

SC24-5901

©

Copyright

IBM

Corp.

2004

293

294

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Index

A
access

groups
adding

users

98

listing

239

accesses
querying

246

adding
application

registry

102

associations

106

identifier

111

registry

alias

132

registry

user

to

registry

136

system

registry

115

target

association

for

identity

in

registry

136

user

to

EIM

access

group

98

administration
RACF

51

aliases
adding

132

listing

228

removing

132

allocating
EimHandle

structure

156

APF-authorized

libraries

40

APIs
groups

having

authority

to

use

95

retrieving
binding

information

60

LDAP

URL

60

Application
programmer

skills

23

application

registries
adding

to

EIM

domain

102

applications
developing

57

security

for

40

associating
local

identity

with

EIM

identifier

106

associations
adding

106

removing

254

returning

list

of

201

attributes
changing

119,

136

getting

for

EIM

handle

175

of

registry

user

entry,

changing

136

of

registry,

changing

128

setting
in

EIM

handle

structure

267

audience

xi

authority
groups

having,

to

use

APIs

95

B
bibliography

293

binding
security

for

26

binding

information
profile,

storing

in

48,

49

retrieving
APIs

for

60

setting

up

48

storing

in

profile

48,

49

C
catclose

64

catgets

63

catopen

63

changing
attribute

119

attribute

of

registry

128

attribute

of

registry

user

entry

136

identifier

124

registry

alias

132

registry

user

entry

attributes

136

configuration
setting

information

for

system

269

configuring
LDAP

31

steps

for

31

connecting
to

EIM

domain

140

to

EIM

master

domain

controller

145

converting
EIM

return

code

to

string

166

error

information

to

a

string

59

creating
domain

34

EIM

domain

34

EIM

domain

object

151

identifier

111

D
DBUNLOAD

using

output

to

prime

EIM

domain

51

deallocating
EimHandle

structure

164

default
domain

LDAP

URL,

setting

up

48

setting

up

domain

LDAP

URL

48

URL,

default

domain,

setting

up

48

default

domain

LDAP

URL
binding

information

48

defining
EIM

domain
eimadmin

utility

77

deleting
domain

159

registry

262

©

Copyright

IBM

Corp.

2004

295

destroying
EimHandle

structure

164

developing
applications

57

directory

information

for

EIM

33

disabling
server

from

using

EIM

domain

51

document
audience

xi

how

to

use

xi

documents,

licensed

xii

domain
connecting

to

140

controllers
creating

EIM

domain

objects

on

151

creating

and

filling

34

deleting

159

information
listing

207

listing

information

207

objects
creating

151

domain

controllers
creating

EIM

domain

objects

on

151

domain

objects
creating

151

E
EIM

access

group
adding

user

to

98

administrator
skills

22,

23

tasks

23

APIs
APF-authorized

libraries

40

configuration

information
retrieving

265

directory

information

33

domain
adding

system

registry

to

115

attribute

of

registry,

changing

128

attribute,

changing

119

changing

attribute

119

changing

attribute

of

registry

128

connecting

to

140

controllers,

creating

objects

on

151

creating

and

filling

34

creating

object

151

deleting

159

disabling

server

from

using

51

information,

listing

207

listing

information

207

object,

creating

151

preventing

server

from

using

51

priming

51

registry,

removing

262

removing

registry

262

stopping

server

from

using

51

system

registry,

adding

115

EIM

(continued)
eimadmin

utility

77

group
removing

users

from

250

users,

removing

from

250

handle
getting

attributes

for

175

setting

attributes

in

267

identifier

administrator
skills

22

tasks

22

identifiers
changing

124

removing

259

installing

33

skills

22

introduction

1

master

domain

controller
connecting

to

145

messages

63

overview

1

planning

21

prerequisite

products
LDAP

27

registries

administrator
skills

23

tasks

23

registry

X

administrator
skills

22

tasks

22

requirements
LDAP

protocol

27

LDAP

TDBM

backend

31

return

code
converting

to

string

166

skill

requirements

21

team

members

21

EIM

administrator
tasks

22

EIM

connection
identifying

156

EIM

domain
planning

24

eimAddAccess
authorizations

99

examples

100

format

98

parameters

98

purpose

98

related

information

99

return

values

99

eimAddApplicationRegistry
authorizations

103

examples

104

format

102

parameters

102

purpose

102

related

information

103

return

values

103

eimAddAssociation
authorizations

108

296

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimAddAssociation

(continued)
examples

109

format

106

parameters

106

purpose

106

related

information

107

return

values

108

eimAddIdentifier
authorizations

112

examples

113

format

111

parameters

111

purpose

111

related

information

112

return

values

112

eimAddSystemRegistry
authorizations

116

examples

117

format

115

parameters

115

purpose

115

related

information

116

return

values

116

eimadmin
actions

78

authorizations

87

error

file

92

files
error

file

92

format

78

objects

78

parameters

80

purpose

78

using

output

to

prime

EIM

domain

51

eimadmin

utility
uses

77

eimChangeDomain
authorizations

121

examples

122

format

119

parameters

119

purpose

119

related

information

121

return

values

121

eimChangeIdentifier
authorizations

125

examples

127

format

124

parameters

124

purpose

124

related

information

125

return

values

126

eimChangeRegistry
authorizations

129

examples

130

format

128

parameters

128

purpose

128

related

information

129

return

values

129

eimChangeRegistryAlias
authorizations

133

examples

134

format

132

parameters

132

purpose

132

related

information

133

return

values

133

eimChangeRegistryUser
authorizations

137

examples

138

format

136

parameters

136

purpose

136

related

information

137

return

values

137

eimConnect
authorizations

142

examples

143

format

140

parameters

140

purpose

140

related

information

142

return

values

142

eimConnectToMaster
authorizations

147

examples

148

format

145

parameters

145

purpose

145

related

information

147

return

values

147

eimCreateDomain
authorizations

153

examples

154

format

151

parameters

151

purpose

151

related

information

153

return

values

153

eimCreateHandle
authorizations

161

examples

162

format

159

parameters

159

purpose

159

related

information

160

return

values

161

eimCreateHandle?
authorizations

157

examples

158

format

156

parameters

156

purpose

156

related

information

156

return

values

157

eimDestroyHandle
authorizations

164

examples

165

format

164

parameters

164

Index

297

eimDestroyHandle

(continued)
purpose

164

related

information

164

return

values

164

eimErr2String
authorizations

166

examples

166

purpose

166

return

values

166

eimErr2String

service

59

eimGetAssociatedIdentifiers
authorizations

170

examples

172

format

168

parameters

168

purpose

168

related

information

170

return

values

170

eimGetAttribute
authorizations

176

examples

177

format

175

parameters

175

purpose

175

related

information

176

return

values

176

eimGetRegistryNameFromAlias
authorizations

180

examples

181

format

179

parameters

179

purpose

179

related

information

180

return

values

180

eimGetTargetFromIdentifier
authorizations

186

examples

187

format

184

parameters

184

purpose

184

related

information

185

return

values

186

eimGetTargetFromSour
authorizations

191

examples

193

format

190

parameters

190

purpose

190

related

information

191

return

values

192

EimHandle

structure
allocating

156

deallocating

164

eimListAccess
authorizations

198

examples

199

format

196

parameters

196

purpose

196

related

information

197

return

values

198

eimListAssociations
authorizations

203

examples

204

format

201

parameters

201

purpose

201

related

information

203

return

values

203

eimListDomains
authorizations

210

examples

211

format

207

parameters

207

purpose

207

related

information

209

return

values

210

eimListIdentifiers
authorizations

216

examples

217

format

214

parameters

214

purpose

214

related

information

216

return

values

216

eimListRegistries
authorizations

223

examples

224

format

221

parameters

221

purpose

221

related

information

223

return

values

224

eimListRegistryAliases
authorizations

229

examples

230

format

228

parameters

228

purpose

228

related

information

229

return

values

229

eimListRegistryUsers
authorizations

235

examples

236

format

233

parameters

233

purpose

233

related

information

234

return

values

235

eimListUserAccess
authorizations

241

examples

242

format

239

parameters

239

purpose

239

related

information

241

return

values

241

eimQueryAccess
authorizations

247

examples

248

format

246

parameters

246

298

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

eimQueryAccess

(continued)
purpose

246

related

information

247

return

values

248

eimRemoveAccess
authorizations

251

examples

253

format

250

parameters

250

purpose

250

related

information

251

return

values

252

eimRemoveAssociation
authorizations

255

examples

257

format

254

parameters

254

purpose

254

related

information

255

return

values

255

eimRemoveIdentifier
authorizations

260

examples

261

format

259

parameters

259

purpose

259

related

information

259

return

values

260

eimRemoveRegistry
authorizations

262

examples

264

format

262

parameters

262

purpose

262

related

information

262

return

values

263

eimRetrieveConfiguration
authorizations

266

format

265

parameters

265

purpose

265

related

information

266

return

values

266

eimSetAttribute
authorizations

267

format

267

parameters

267

purpose

267

related

information

267

return

values

267

eimSetConfiguration
authorizations

270

format

269

parameters

269

purpose

269

related

information

270

return

values

270

error

information
converting

to

string

59

error

messages
eimadmin

sends

to

stderr

92

error

messages

(continued)
list

63

stderr,

eimadmin

sends

to

92

errors
converting

information

to

string

59

example
IRR.PROXY.DEFAULTS

FACILITY

class,

using

50

F
FACILITY

class
IRR.PROXY.DEFAULTS

example

of

using

50

files
error

file

92

filtering
identifiers

214

fprintf

64

G
getting

attributes

for

EIM

handle

175

target

identity
associated

with

EIM

identifier

184

associated

with

source

identity

190

groups
having

authority

to

use

APIs

95

H
handle

getting

attributes

for

175

setting

attributes

in

267

I
identifiers

adding

111

changing

124

creating

111

listing

168

planning

considerations

25

removing

259

returning

214

identifying
EIM

connection

156

identities
getting,

target
associated

with

EIM

identifier

184

associated

with

source

190

target,

getting
associated

with

EIM

identifier

184

associated

with

source

190

installing
EIM

33

skills

22

LDAP

31

skills

22

steps

for

31

Index

299

introduction

to

EIM

1

IRR.PROXY.DEFAULTS
example

of

using

50

L
LDAP

31

administrator
skills

23

tasks

23

binding

information
storing

in

profile

48,

49

configuring

31

steps

for

31

default

domain

URL
setting

up

48

installing

31

skills

22

steps

for

31

protocol

required

27

servers
requirements

for

EIM

27

storing
binding

information

in

profile

48,

49

TDBM

required

31

URL
retrieving

60

setting

up

48

Version

3

protocol

27

licensed

documents

xii

listing
access

groups

239

aliases

for

registry

228

associations

201

EIM

domain

information

207

identifiers

168,

214

registries
user

221

user

registries

221

users
having

target

associations

defined

233

of

specified

EIM

access

type

196

local

identity
associating

with

EIM

identifier

106

LookAt

message

retrieval

tool

xii

lookups
registry

name

not

needed

50

without

registry

name

50

M
maintaining

per-connection

information

156

mapping

lookup
returning

more

than

one

user

136

mappings
removing

259

master

domain

controller
connecting

to

145

message

retrieval

tool,

LookAt

xii

messages
list

63

modifying
identifier

124

MVS

programmer
tasks

60

N
names

registry,

returning

179

Notices

289

O
overview

of

EIM

1

P
per-connection

information,

maintaining

156

planning
for

EIM

domain

24

for

EIM

implementation

21

for

identifiers

25

preface

xi

preventing
server

from

using

EIM

domain

51

priming
EIM

domain
eimadmin

utility

77

priming

EIM

domain

51

printf

64

profile
binding

information,

storing

in

48,

49

LDAP

binding

information,

storing

in

48,

49

storing

LDAP

binding

information

in

48,

49

protocol
LDAP

requirement

27

publications
on

CD-ROM

xi

softcopy

xi

Q
querying

access

246

R
RACF

administration

51

publications
on

CD-ROM

xi

softcopy

xi

RACF

administrator
tasks

23

registries
aliases

listing

228

removing

262

300

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

registries

(continued)
types

of

84

user
listing

221

registry

alias
changing

132

registry

name
lookups

without

50

registry

names
returning

list

of

179

registry

user

entries
changing

attributes

of

136

registry

users
adding

to

registry

136

removing
association

254

domain

159

identifier

259

registry

262

registry

alias

132

user
from

EIM

group

250

requirements
LDAP

(for

EIM)

27

retrieving
binding

information
APIs

for

60

configuration

information

265

EIM

configuration

information

265

LDAP

URL
APIs

for

60

URL
APIs

for

60

returning
aliases

for

registry

228

associations

201

identifiers

214

list

of

aliases

for

registry

228

list

of

identifiers

168

list

of

registry

names

179

more

than

one

user

from

mapping

lookup

136

roles

21

S
sample

IRR.PROXY.DEFAULTS

FACILITY

class,

using

50

security
applications

40

binding

26

server
disabling

from

using

EIM

domain

51

preventing

from

using

EIM

domain

51

stopping

from

using

EIM

domain

51

services
eimErr2String

59

setting
attributes

in

EIM

handle

structure

267

configuration

information
for

system

269

setting

up
binding

information

48

default

domain

LDAP

URL

48

LDAP

URL

48

skills
Application

programmer

23

EIM

administrator

22,

23

EIM

identifier

administrator

22

EIM

registries

administrator

23

EIM

registry

X

administrator

22

installing

EIM

22

LDAP

administrator

23

requirements

21

setting

up

EIM

22

User

registry

administrator

23

Web

server

programmer

22

z/OS

system

programmer

23

SMP/E

33

sprintf

64

stderr
eimadmin

sending

error

messages

to

92

steps
binding

information
storing

in

profile

48,

49

configuring
LDAP

31

configuring

LDAP

31

creating

EIM

domain

34

disabling
server

from

using

EIM

domain

51

domain,

creating

and

filling

34

EIM

domain,

creating

and

filling

34

eimErr2String,

using

59

filling

EIM

domain

34

installing
LDAP

31

installing

LDAP

31

LDAP

binding

information
storing

in

profile

48,

49

LDAP,

installing

and

configuring

31

lookups

without

registry

name,

setting

up

50

preventing
server

from

using

EIM

domain

51

server,

disabling

from

using

EIM

domain

51

setting

up
binding

information

48

default

domain

LDAP

URL

48

LDAP

URL

48

setting

up

lookups

without

registry

name

50

stopping
server

from

using

EIM

domain

51

storing
LDAP

binding

information

in

profile

48,

49

using

eimErr2String

59

stopping
server

from

using

EIM

domain

51

storing
binding

information

in

profile

48,

49

LDAP

binding

information

in

profile

48,

49

system

registries
adding

115

Index

301

T
target

associations
adding

for

identity

in

registry

136

listing

users

with

233

target

identities
getting

associated

with

EIM

identifier

184

associated

with

source

190

tasks
EIM

administrator

22,

23

EIM

identifier

administrator

22

EIM

registries

administrator

23

EIM

registry

X

administrator

22

LDAP

administrator

23

MVS

programmer

60

RACF

administrator

23

z/OS

system

programmer

23

TDBM

31

team

members

21

types

of
registries

84

U
UNIX

programmer
application

development

57

URL
retrieving

APIs

for

60

user
returning

more

than

one

from

mapping

lookup

136

user

registries
listing

221

User

registry

administrator
skills

23

users
adding

to

EIM

access

group

98

listing

196

those

with

target

associations

defined

233

removing
from

EIM

group

250

using

this

document
how

to

xi

who

should

xi

V
Version

3

protocol

(LDAP)

27

W
Web

server

programmer
skills

22

Z
z/OS

system

programmer
installing

EIM

33

recording

directory

information

33

skills

23

z/OS

system

programmer

(continued)
tasks

23

302

z/OS

V1R5.0

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Readers’

Comments

—

We’d

Like

to

Hear

from

You

z/OS

Integrated

Security

Services

Enterprise

Identity

Mapping

(EIM)

Guide

and

Reference

Publication

No.

SA22-7875-01

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SA22-7875-01

SA22-7875-01

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Department

55JA,

Mail

Station

P384

2455

South

Road

Poughkeepsie,

NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5694-A01,

5655-G52

Printed

in

USA

SA22-7875-01

	Contents
	Tables
	Figures
	About this document
	Who should use this document
	How to use this document
	Where to find more information
	Softcopy publications
	Using LookAt to look up message explanations
	Accessing z/OS licensed documents on the Internet

	Other sources of information
	Internet sources

	To request copies of IBM publications

	Summary of changes
	Chapter 1. Enterprise Identity Mapping (EIM)
	The problem: Managing multiple user registries
	Current approaches
	The EIM approach

	Chapter 2. EIM concepts
	EIM domain controller
	EIM domain
	EIM identifier
	EIM identifier representing a person
	EIM identifier representing an entity
	EIM identifiers and aliasing

	EIM registry definition
	EIM registry definitions and aliasing
	System and application registry definitions

	EIM associations
	EIM lookup operation
	Authorities

	Chapter 3. Planning for EIM
	Identifying skill requirements
	Team members

	Planning for EIM client applications
	Planning for an EIM domain
	Planning for EIM registries
	Planning considerations for identifiers
	Planning considerations for associations
	Accessing the EIM domain

	Planning considerations for an EIM domain controller
	Planning EIM administration tools
	Customizing EIM on your operating system
	Task roadmap for implementing EIM

	Chapter 4. Setting up EIM on z/OS
	Steps for installing and configuring the EIM domain controller on z/OS
	Installing and configuring EIM on z/OS
	Steps for using the eimadmin utility to manage an EIM domain
	Domain authentication methods
	Using simple binds
	Using CRAM-MD5 password protection
	Using digital certificates
	Using Kerberos
	Using Secure Sockets Layer (SSL)

	Installation considerations for applications
	Ongoing administration
	Managing registries
	Adding a system and application registry
	Listing a registry
	Removing a registry

	Working with registry aliases
	Assigning an alias
	Listing an alias
	Removing an alias
	Assigning an alias name to a different registry

	Adding a new user
	Adding an identifier
	Adding associations
	Listing associations

	Removing a user
	Removing associations
	Removing an identifier

	Changing access authority
	Adding access authorities
	Listing access authorities
	Removing access authorities

	Chapter 5. Using RACF commands to set up and tailor EIM
	Using RACF for EIM domain access
	Setting up default domain LDAP URL and binding information
	Storing LDAP binding information in a profile
	Adding EIM domain and bind information for servers or administrative users
	Adding a system default using the IRR.EIM.DEFAULTS profile
	Adding a system default using the IRR.PROXY.DEFAULTS profile

	Optionally setting up a registry name for your local RACF registry
	Steps for setting up lookups that do not need a registry name

	Ongoing RACF administration
	Disabling use of an EIM domain
	Steps for disabling use of an EIM domain

	Using output from the RACF database unload utility and eimadmin to prime your EIM domain with information

	Chapter 6. Developing applications
	Writing EIM applications
	Default registry names
	Defining private user registry types in EIM
	Define a private user registry type in EIM

	Building an EIM application
	Compile considerations
	Link-edit considerations

	Preparing to run an EIM application
	APIs for retrieving the LDAP URL and binding information
	Determining why a mapping is not returned

	Chapter 7. Messages
	Chapter 8. The eimadmin utility
	eimadmin
	Examples for listing various objects without an input file
	Using an input file
	Input file requirements
	Input file contents
	The label line
	Processing differences between command-line options and input files

	The output file
	The error file
	Example for adding a list of identifiers to an EIM domain

	Chapter 9. EIM APIs
	Authority to use APIs
	EimRC -- EIM return code parameter
	Field descriptions

	eimAddAccess
	eimAddApplicationRegistry
	eimAddAssociation
	eimAddIdentifier
	eimAddSystemRegistry
	eimChangeDomain
	eimChangeIdentifier
	eimChangeRegistry
	eimChangeRegistryAlias
	eimChangeRegistryUser
	eimConnect
	eimConnectToMaster
	eimCreateDomain
	eimCreateHandle
	eimDeleteDomain
	eimDestroyHandle
	eimErr2String
	eimGetAssociatedIdentifiers
	eimGetAttribute
	eimGetRegistryNameFromAlias
	eimGetTargetFromIdentifier
	eimGetTargetFromSource
	eimListAccess
	eimListAssociations
	eimListDomains
	eimListIdentifiers
	eimListRegistries
	eimListRegistryAliases
	eimListRegistryUsers
	eimListUserAccess
	eimQueryAccess
	eimRemoveAccess
	eimRemoveAssociation
	eimRemoveIdentifier
	eimRemoveRegistry
	eimRetrieveConfiguration
	eimSetAttribute
	eimSetConfiguration

	Chapter 10. EIM header file and example
	eim.h
	Example for creating LDAP suffix and user objects

	Notices
	Programming interface information
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

